python 求矩阵特征值(python中计算矩阵特征向量的方法)
导读:python作为编程中较为简单的编程方法,是可以实现线性计算的,numpy库提供了矩阵运算,可以实现求取矩阵特征向量,...
python作为编程中较为简单的编程方法 ,是可以实现线性计算的 ,numpy库提供了矩阵运算 ,可以实现求取矩阵特征向量 ,scipy也可以实现numpy库提供的矩阵运算功能 ,是对numpy库提供矩阵运算的扩展 ,本文介绍python中计算矩阵特征向量的两种方法:1 、使用numpy.linalg.eig(a)函数;2 、使用scipy.linalg.eig()计算方阵的特征向量(numpy方法的拓展) 。
一 、使用numpy.linalg.eig(a)函数
参数:
a:想要计算奇异值和右奇异值的方阵 。
返回值:
w:特征值 。每个特征值根据它的多重性重复 。这个数组将是复杂类型 ,除非虚数部分为0 。当传进的参数a是实数时 ,得到的特征值是实数 。
v:特征向量 。
使用实例
>>>fromnumpyimportlinalgasLA >>>a=np.array([[1,1j],[-1j,1]]) >>>w,v=LA.eig(a) >>>w;v array([2.00000000e+00+0.j,5.98651912e-36+0.j])#i.e.,{2,0} array([[0.00000000+0.70710678j,0.70710678+0.j], [0.70710678+0.j,0.00000000+0.70710678j]]) >>>a=np.array([[1+1e-9,0],[0,1-1e-9]]) >>>#Theor.e-valuesare1+/-1e-9 >>>w,v=LA.eig(a) >>>w;v array([1.,1.]) array([[1.,0.], [0.,1.]])二 、使用scipy.linalg.eig()计算方阵的特征向量(numpy方法的拓展)
1 、语法格式
print(Eig:,lg.eig(arr))#求矩阵arr的特征向量2 、使用实例
#coding:utf-8 from__future__importdivision fromscipyimportlinalgasla fromscipyimportoptimize importsympy importnumpyasnp sympy.init_printing() importmatplotlib.pyplotasplt #使用scipy求解矩阵特征值 A=np.array([[1,3,5],[3,5,3],[5,3,9]]) evals,evecs=la.eig(A) eigvalues=la.eigvalsh(A)创心域SEO版权声明:以上内容作者已申请原创保护,未经允许不得转载,侵权必究!授权事宜、对本内容有异议或投诉,敬请联系网站管理员,我们将尽快回复您,谢谢合作!