msvar模型介绍(【Timm】create_model所提供的ViT模型概览)
导读: ⚪查看代码:python xxx.py ...
⚪查看代码:python xxx.py
import timm if __name__ == __main__: model_vit = timm.list_models(*vit*) print(len(model_vit),model_vit[:])⚪结合vision transformer理解
7 ResNets:
R50x1, R50x2 R101x1, R152x1, R152x2, pre-trained for 7 epochs, plus R152x2 and R200x3 pre-trained for 14 epochs;6 Vision Transformers:
ViT-B/32, B/16, L/32, L/16, pre-trained for 7 epochs, plus L/16 and H/14 pre-trained for 14 epochs;5 hybrids,
R50+ViT-B/32, B/16, L/32, L/16 pretrained for 7 epochs, plus R50+ViT-L/16 pre-trained for 14 epochs参数解读:
以ViT-L/16为例 ,表示ViT Large模型 ,对应patch_size为16 。 但是 ,混合模型的数值不是对应patch_size ,而是ResNet的总取样率 。 采样:模拟信号进行取样时的快慢次数 这里就能对Timm库所提供的预训练模型有所理解 。⚪ViT_model概览-28个
vit_base_patch16_224, vit_base_patch16_224_in21k, vit_base_patch16_384, vit_base_patch32_224, vit_base_patch32_224_in21k, vit_base_patch32_384, vit_base_resnet26d_224, vit_base_resnet50_224_in21k, vit_base_resnet50_384, vit_base_resnet50d_224, vit_deit_base_distilled_patch16_224, vit_deit_base_distilled_patch16_384, vit_deit_base_patch16_224, vit_deit_base_patch16_384, vit_deit_small_distilled_patch16_224, vit_deit_small_patch16_224, vit_deit_tiny_distilled_patch16_224, vit_deit_tiny_patch16_224, vit_huge_patch14_224_in21k, vit_large_patch16_224, vit_large_patch16_224_in21k, vit_large_patch16_384, vit_large_patch32_224, vit_large_patch32_224_in21k, vit_large_patch32_384, vit_small_patch16_224, vit_small_resnet26d_224, vit_small_resnet50d_s3_224文章推荐:
Pytorch视觉模型库--timm_pytorch 模型库 pytorch下的迁移学习模型库·详细使用教程创心域SEO版权声明:以上内容作者已申请原创保护,未经允许不得转载,侵权必究!授权事宜、对本内容有异议或投诉,敬请联系网站管理员,我们将尽快回复您,谢谢合作!