首页IT科技最详细、最完整的相机标定讲解(相机与IMU标定教程)

最详细、最完整的相机标定讲解(相机与IMU标定教程)

时间2025-04-27 11:05:20分类IT科技浏览15148
导读:标定教程...

标定教程

way

相机与IMU联合标定

1                、imu_utils 标定IMU的内参

1                      、 imu_utils标定IMU的内参                ,可以校准IMU的噪声密度和随机游走噪声

2       、kalibr包标定相机的内外参数                      ,相机与IMU之间的外参

1.1安装环境

这里使用的包是 imu_utils ,使用这个包可以校准IMU的噪声密度和随机游走噪声

step1: 安装ceres库

sudo apt-get install liblapack-dev libsuitesparse-dev libcxsparse3.1.2 libgflags-dev sudo apt-get install libgoogle-glog-dev libgtest-dev

下载编译 ceres-solver

git clone https://github.com/ceres-solver/ceres-solver.git cd ceres-solver mkdir build cd build cmake .. make sudo make install

step2: 安装 code_utils

构建工作空间

mkdir -p ~/kalibr_workspace/src cd ~/kalibr_workspace catkin_make

注意:这里需要修改 code_utils 的 CMakeLists.txt 文件, CMAKE_CXX_FLAGS “-std=c++11                ” 改为 CMAKE_CXX_STANDARD 14 并在添加 include_directories(include/code_utils)

sudo apt-get install libdw-dev cd kalibr_workspace/src git clone https://github.com/gaowenliang/code_utils.git cd .. catkin_make

step3: 安装 imu_utils (imu_utils依赖code_utils 先编译code_utils 再编译imu_utils              。)

注意:这里需要t同样修改 imu_utils 的 CMakeLists.txt 文件, CMAKE_CXX_FLAGS “-std=c++11                      ” 改为 CMAKE_CXX_STANDARD 14

cd kalibr_workspace/src git clone https://github.com/gaowenliang/imu_utils.git cd .. catkin_make

1.2            、录制IMU数据集

step4: 静止情况下采集IMU的数据       ,并录制为ROS包            ,我采集的时间为2小时20分钟                       。

rosbag record /imu/data -O imu_xsens.bag

step5: 标定 配置xsens.launch文件为如下内容:(指定IMU的topic)

<launch> <node pkg="imu_utils" type="imu_an" name="imu_an" output="screen"> <param name="imu_topic" type="string" value= "/imu/data"/> #话题名称 <param name="imu_name" type="string" value= "xsens"/> <param name="data_save_path" type="string" value= "$(find imu_utils)/data/"/> <param name="max_time_min" type="int" value= "120"/> #加载多长时间的数据 <param name="max_cluster" type="int" value= "100"/> </node> </launch>

这里有一个max_time_min表示使用bag数据的最大时长                       ,单位是分钟          ,默认是120分钟        ,

step6:启动 imu_utils 标定IMU roslaunch imu_utils xsens.launch rosbag play -r 200 imu_xsens.bag

这一步是关键                        ,在执行上上步roslaunch imu_utils xsens.launch之后              ,程序会进入等待话题的状态        。

得到如下输出结果:

尽快执行rosbag play -r 200 自己的.bag    ,程序进入bag读取                        ,并计算allan方差           。当bag包加速回放完毕后                  ,执行launch的窗口仍然会显示wait for imu data.,等待一段时间计算                    ,计算完毕后会显示计算结果                      。

显示done之后                      ,在catkin_ws/src/imu_utils/data这个文件夹下会出现一系列的data文件    ,打开xsens_imu_param.yaml这个文件                ,会看到计算出来的噪声和随机游走的系数值            。

![在这里插入图片描述](https://img-blog.csdnimg.cn/319e45ea36804a1aa6bf7611742df814.png %YAML:1.0 --- type: IMU name: xsens Gyr: unit: " rad/s" avg-axis: gyr_n: 5.0034702036714999e-02 gyr_w: 2.4583978028785876e-03 x-axis: gyr_n: 2.5852284735645492e-02 gyr_w: 1.8303245177389645e-03 y-axis: gyr_n: 9.8883151331650182e-02 gyr_w: 4.8477797168896648e-03 z-axis: gyr_n: 2.5368670042849317e-02 gyr_w: 6.9708917400713272e-04 Acc: unit: " m/s^2" avg-axis: acc_n: 9.1440795637947525e-01 acc_w: 2.1004351612340905e-02 x-axis: acc_n: 2.0238764067980461e-01 acc_w: 1.7432126284010131e-02 y-axis: acc_n: 4.8601261496646220e-01 acc_w: 2.0739830749315680e-02 z-axis: acc_n: 2.0548236134921587e+00 acc_w: 2.4841097803696900e-02

2                       、kalibr 标定工具

2.1安装

sudo apt-get install python-setuptools python-rosinstall ipython libeigen3-dev libboost-all-dev doxygen libopencv-dev sudo apt-get install libopencv-dev ros-kinetic-vision-opencv ros-kinetic-image-transport-plugins ros-kinetic-cmake-modules python-software-properties software-properties-common libpoco-dev python-matplotlib python-scipy python-git python-pip ipython libtbb-dev libblas-dev liblapack-dev python-catkin-tools libv4l-dev sudo pip install python-igraph (sudo apt install python-pip (python2.7)) //若出现问题                      ,用以下命令安装 sudo apt-get install python-igraph

编译kalibr,这里要确保电脑联网,编译时间有点长.

cd ~/kalibr_workspace/src git clone https://github.com/ethz-asl/Kalibr.git cd ~/kalibr_workspace catkin build -DCMAKE_BUILD_TYPE=Release -j4 source ~/kalibr_workspace/devel/setup.bash

node:若编译出现如下问题,参考链接[2].

2.2 校准相机的内外参

标定板使用二维码aprilgrid或者棋盘格checkerboard都是可以的       ,使用时做好相应yaml的修改即可        。标定板下载见https://github.com/ethz-asl/kalibr/wiki/downloads            ,需要有google帐号且要有谷歌云端硬盘的访问权限                      。如果不可以(比方说我就不可以)                       ,可参照https://github.com/ethz-asl/kalibr/wiki/calibration-targets          ,使用kalibr_create_target_pdf命令自己创建指定标定板然后打印就可以了                。

本篇使用了二维码标定板        ,创建或修改apriltag.yaml target_type: aprilgrid #gridtype tagCols: 6 #number of apriltags tagRows: 6 #number of apriltags tagSize: 0.088 #size of apriltag, edge to edge [m] tagSpacing: 0.3 #ratio of space between tags to tagSize

其中tagsize和tagspacing是要根据实际打印出来的标定板做修改的                        ,其参数意义可参照下图              ,该图同样来自https://github.com/ethz-asl/kalibr/wiki/calibration-targets    。

step1 运行相机节点

rosrun sensor_driver stereo_left_node rosurn sensor_driver stereo_right_node

step2 修改话题的频率为4 启动相机节点    ,因为kalibr处理时建议图像频率不能太高                        ,此处使用topic_tools/throttle对输出的图像话题降频                  ,4Hz也是官方推荐的频率                      。

rosrun topic_tools throttle messages /stereo_left_node/left 4.0 /left rosrun topic_tools throttle messages /stereo_right_node/right 4.0 /right

node:对命令解释说明

rosrun topic_tools throttle messages 修改后的话题名 频率 原始话题名

该命令可以修改话题的名和频率,本文修改了话题的频率                    ,话题名称修改为/left /right

step3 录制bag数据

rosbag record -0 stereo_calibar.bag /left_img /right_img

node:双目采集数据说明

将相机对准标定板                      ,不断移动相机达到获取不同角度图像    ,大概采集200张图片(50s左右)

step4 用Kalibr双目相机标定

// 进入到kalibr工具目录下 source devel/setup.bash rosrun kalibr kalibr_calibrate_cameras --bag xxx/stereo_calibra.bag --topics /left_img /right_img --models omni-radtan omni-radtan --target xxx/april_6x6_80x80cm_A0.yaml rosrun kalibr kalibr_calibrate_cameras --bag src/data/2021-09-02-16-24-01.bag --topics /left_img /right_img --models omni-radtan omni-radtan --target src/data/april_6x6_80x80cm_A0.yaml --show-extraction --approx-sync 0.05

node:对命令解释说明

rosrun kalibr kalibr_calibrate_cameras --bag xxx/stereo_calibra.bag --topics /left_img /right_img --models omni-radtan omni-radtan --target xxx/april_6x6_80x80cm_A0.yaml --bag-from-to 5 105

xxx/stereo_calibra.bag stpe3 录制的bag路径 /left_img /right_img 话题名 omni-radtan omni-radtan 后面是相机/畸变模型                ,有几目相机就要写几个                      ,这里是两个omni-radtan模型相机       ,所以是两个omni-radtan;相应地            ,其他支持的模型可以查看https://github.com/ethz-asl/kalibr/wiki/supported-models                    。 xxx/april_6x6_80x80cm_A0.yaml 标定板配置文件 (使用标准的标定板                       ,从官网下载的yaml文件参数不用修改          , 笔记本中有这个文件 可以直接用) –show-extraction 是在标定过程中的一个显示界面        ,可以看到图片提取的过程                        ,可以不要; –approx-sync 0.05 时间戳不对齐问题 –bag-from-to后面是想要使用数据时间段的起始时间和结束时间              ,单位:秒(s)    ,这个参数可以剔除掉刚开始录制和结束时一些出入视野等画面

个人遇到的问题记录:

标定运行过程中报错                        ,RuntimeError: Optimization failed!

可以参照github上作者的回答https://github.com/ethz-asl/kalibr/issues/41                  ,提高timeOffsetPadding (https://github.com/ethz-asl/kalibr/blob/master/aslam_offline_calibration/kalibr/python/kalibr_calibrate_imu_camera#L171)再次尝试。

标定完成会生成下面3个文件,其中命名为camchain的.yaml文件是后续联合标定要继续用到的                    ,里面包含了所需的相机的内外参                  。

可以查看report的pdf                      ,重投影误差(reprojection errors)在1个像素以内标定就是比较好的了                        。

3          、相机和IMU联合标定

step1 录制数据集

把IMU和相机固定在一起录制ROS bag包, 录制的时候要注意按照官方的说法-充分激励IMU

- 绕3个轴旋转和3个方向的平移    ,这里有个[官方视频3] 可以参考

录制数据包时同样也要控制图像数据频率    。 rosrun topic_tools throttle messages /camleft/video_image 4.0 /caml rosrun topic_tools throttle messages /camright/video_image 4.0 /camr rosbag record -O stereo_imu_calibra.bag /stereo_left_node/left /stereo_right_node/right /imu_node/imu0

注意事项:

采集数据的起始和结束阶段注意别晃动太大                ,如从桌子上拿起或者放下              。如果有这样的动作                      ,在标定阶段应该跳过bag数据集的首尾的数据. 采集数据的时候应该给imu各个轴足够的激励       ,如先依次绕各个轴运动            ,运动完后来个在空中画8字之类的操作                       ,当然也要注意别运动太剧烈          ,图像都模糊了                       。

联合标定中imu内参yaml格式如下        ,并不能直接拿imu_utils的标定结果yaml文件来用                        ,否则会报错RuntimeError: [ImuConfig Reader]: Could not read configuration from …

#Accelerometers accelerometer_noise_density: 4.8641695361661035e-03 #Noise density (continuous-time) accelerometer_random_walk: 2.3944306307068487e-04 #Bias random walk #Gyroscopes gyroscope_noise_density: 5.4583665041817392e-04 #Noise density (continuous-time) gyroscope_random_walk: 6.1968037914410386e-06 #Bias random walk rostopic: /imu #the IMU ROS topic update_rate: 100.0 #Hz (for discretization of the values above)

step2 标定

source devel/setup.bash rosrun kalibr kalibr_calibrate_imu_camera --target src/data/april_6x6_80x80cm_A0.yaml --cam src/data/camera.yaml --imu src/data/A1_ium.yaml --bag src/data/stereo_imu_calibra.bag rosrun kalibr kalibr_calibrate_imu_camera --target april_6x6_55x55mm.yaml --bag ~/bagfiles/zed_xsens.bag --bag-from-to 5 50 --cam src/data/camera.yaml --imu src/data/A1_ium.yaml --imu-models scale-misalignment --timeoffset-padding 0.1

node:对命令解释说明

1        、--target src/data/april_6x6_80x80cm_A0.yaml :标定板的参数文件;

2                        、--bag images_imu.bag指定数据包

3              、–bag-from-to 5 50设定bag包开始时间和结束时间              ,避开拿起和放下IMU的时间段内的数据

2    、--cam src/data/camera.yaml :camera的参数文件    ,格式参考【文档1:camera.yaml】        。使用标定好的相机参数替换对应的内容;

3                        、--imu src/data/ium.yaml  :imu的配置文件                        ,格式参考【文档2:imu.yaml】                  ,用标定好的imu参数替换相应的参数;

4                  、–imu-models scale-misalignment IMU的参数模型

camera.yaml文件内容如下:

cam0: cam_overlaps: [1] camera_model: pinhole distortion_coeffs: [-0.1734857772863602, 0.026545178121976657, 0.0004291887376674085, -3.4873170616746686e-05] distortion_model: radtan intrinsics: [693.131838769146, 692.5498277671763, 616.3486206381017, 379.6677572220899] resolution: [1280, 720] rostopic: /stereo/left/image_raw cam1: T_cn_cnm1: - [0.9999658061828064, 0.0005632950824424241, 0.0082504038578218, -0.11947602055948268] - [-0.0006621128372211408, 0.9999280240823567, 0.011979493367486592, 0.0004870068672051519] - [-0.008243062037729159, -0.011984546441186855, 0.9998942056912012, -0.0028910358303400464] - [0.0, 0.0, 0.0, 1.0] cam_overlaps: [0] camera_model: pinhole distortion_coeffs: [-0.17456713089475154, 0.027410444232267236, 0.0006360696559962682, -0.0002450168896166665] distortion_model: radtan intrinsics: [694.2107729740508, 693.480347118504, 617.3114354961933, 380.800130116761] resolution: [1280, 720] rostopic: /stereo/right/image_raw

imu.yaml文件内容如下:

#Accelerometers accelerometer_noise_density: 5.43036e-03 #Noise density (continuous-time) accelerometer_random_walk: 1.44598e-04 #Bias random walk #Gyroscopes gyroscope_noise_density: 4.9700e-03 #Noise density (continuous-time) gyroscope_random_walk: 6.8522e-05 #Bias random walk rostopic: /imu/data #the IMU ROS topic update_rate: 100.0 #Hz (for discretization of the values above)

标定完成以后同样会生成一个报表和在终端里面打印校准信息;

标定结果的重投影误差应该在零点几个像素

标定出来的位移和实际测量或估计的IMU 和相机中心位移比较一致

参考文献

Kalibr 标定双目内外参数以及 IMU 外参数 使用kalibr对双目-IMU进行标定(小觅相机) [相机标定] 用Kalibr标定diy的双目相机 《视觉SLAM进阶:从零开始手写VIO》第二讲作业 没有libelf.h libdw.h imu_utils IMU内参标定工具 imu_utils安装教程 imu_utils使用教程 VIO 中 IMU 的标定流程 (1/3) - imu_utils 使用备忘 VIO 中 IMU 的标定流程 (2/3) - kalibr_allan 使用备忘 VIO 中 IMU 的标定流程 (3/3) - imu_tk 使用备忘 相机与IMU联合标定_熊猫飞天的博客-CSDN博客_相机和imu联合标定

创心域SEO版权声明:以上内容作者已申请原创保护,未经允许不得转载,侵权必究!授权事宜、对本内容有异议或投诉,敬请联系网站管理员,我们将尽快回复您,谢谢合作!

展开全文READ MORE
申请加入英文翻译(【申请加入New Bing遇到的问题:当前无法使用此页面,cn.bing.com 重定向次数过多】) 万网域名备案怎么弄(万网域名备案:等待时间分析及操作技巧)