chattype(ChatGPT的N种用法(持续更新中。。。))
前言
当今的ChatGPT是一个强大的语言模型 ,它可以帮助您创建出色的产品并提高您的业务成功率 。ChatGPT利用大规模的自然语言处理和机器学习算法 ,可以进行自然而流畅的对话 ,理解自然语言问题和回答 。您可以使用ChatGPT来建立智能客服 、智能助手 、文本自动补全 、语音识别和机器翻译等多种产品 。ChatGPT可以快速适应新的数据和新的场景 ,使用ChatGPT ,您可以轻松实现个性化 、高效率和全天候的服务 。让ChatGPT帮助您推动业务的增长!
一 、语法更正
用途:文章 、论文等润色 。
二 、文本翻译
用途:日常学习 、商务翻译等 。
三 、语言转换
3-1 、Python–>JAVA
用途:工作用途 ,不同语言工程师之间的合作 ,更加方便 。
import numpy as np import plotly.express as px def thresholding_algo(y, lag, threshold): """ :param y: 输入列表 :param lag: 滑动窗口大小 :param threshold: 调节系数 ,用于调节容忍范围的大小 。 :return: """ # signals:信号列表 signals = np.zeros(len(y)) avgFilter = np.zeros(len(y)) # 初始化平均值列表 、差值列表 avgFilter[lag - 1] = np.mean(y[0:lag]) dif_li = [0] * len(y) for i in range(lag, len(y)): if i < len(y) - lag - 30: for j in range(i + 11, len(y)): if y[j] >= y[i - 1]: break if j >= len(y) - 30: back = y[i - 1] else: back = np.mean(y[j + 11:j + 20 + lag]) else: back = y[i - 1] # 前后均值差值计算 tmp = abs(back - avgFilter[i - 1]) dif = (tmp if tmp > 1 else 1) if abs(y[i] - avgFilter[i - 1]) > dif * threshold: signals[i] = (1 if y[i] > avgFilter[i - 1] else -1) avgFilter[i] = np.mean(y[(i - lag):i]) y[i] = avgFilter[i - 1] else: signals[i] = 0 avgFilter[i] = np.mean(y[(i - lag):i]) dif_li[i] = dif return dict(signals=np.asarray(signals), avgFilter=np.asarray(avgFilter), y=np.asarray(y), dif=np.asarray(dif_li), ) public static Map<String, double[]> thresholding_algo(double[] y, int lag, double threshold) { double[] signals = new double[y.length]; double[] avgFilter = new double[y.length]; Arrays.fill(avgFilter, 0.0); avgFilter[lag - 1] = mean(Arrays.copyOfRange(y, 0, lag)); double[] dif_li = new double[y.length]; Arrays.fill(dif_li, 0.0); for (int i = lag; i < y.length; i++) { int j; if (i < y.length - lag - 30) { for (j = i + 11; j < y.length; j++) { if (y[j] >= y[i - 1]) { break; } } double back; if (j >= y.length - 30) { back = y[i - 1]; } else { back = mean(Arrays.copyOfRange(y, j + 11, j + 20 + lag)); } } else { back = y[i - 1]; } double tmp = Math.abs(back - avgFilter[i - 1]); double dif = tmp > 1 ? tmp : 1; if (Math.abs(y[i] - avgFilter[i - 1]) > dif * threshold) { signals[i] = y[i] > avgFilter[i - 1] ? 1 : -1; avgFilter[i] = mean(Arrays.copyOfRange(y, i - lag, i)); y[i] = avgFilter[i - 1]; } else { signals[i] = 0; avgFilter[i] = mean(Arrays.copyOfRange(y, i - lag, i)); } dif_li[i] = dif; } Map<String, double[]> result = new HashMap<>(); result.put("signals", signals); result.put("avgFilter", avgFilter); result.put("y", y); result.put("dif", dif_li); return result; } private static double mean(double[] array) { double sum = 0.0; for (double d : array) { sum += d; } return sum / array.length; }四 、代码解释-1
用途:当我们来到一家新的公司 ,发现前任工程师留下了一摊谁都看不懂的代码 ,这时候 ,如果有个人能帮我们解释一下这些代码是什么意思 ,那简直不要太开心 。
def Fusion_algorithm(y_list): """ 最终的融合算法 1、第一次遍历列表: 处理掉小于上一个值的点,使其等于上一个值 。 2 、第二次使用z-score来处理异常点:一种基于统计方法的时序异常检测算法借鉴了一些经典的统计方法 ,比如Z-score和移动平均线 该算法将时间序列中的每个数据点都看作是来自一个正态分布 ,通过计算每个数据点与其临接数据点的平均值和标准差,可以获得Z-score 并将其用于检测异常值 ,将z-score大于3的数据点视为异常值 ,缺点:如果异常点太多 ,则该算法的准确性较差 。 3 、 :param y_list: 传入需要处理的时间序列 :return: """ # 第一次处理 for i in range(1, len(y_list)): difference = y_list[i] - y_list[i - 1] if difference <= 0: y_list[i] = y_list[i - 1] # 基于突变检测的方法:如果一个数据点的值与前一个数据点的值之间的差异超过某个阈值 , # 则该数据点可能是一个突变的异常点 。这种方法需要使用一些突变检测算法 ,如Z-score突变检测、CUSUM(Cumulative Sum) # else: # if abs(difference) > 2 * np.mean(y_list[:i]): # y_list[i] = y_list[i - 1] # 第二次处理 # 计算每个点的移动平均值和标准差 ma = np.mean(y_list) # std = np.std(np.array(y_list)) std = np.std(y_list) # 计算Z-score z_score = [(x - ma) / std for x in y_list] # 检测异常值 for i in range(len(y_list)): # 如果z-score大于3 ,则为异常点 ,去除 if z_score[i] > 3: print(y_list[i]) y_list[i] = y_list[i - 1] return y_list五 、代码解释-2
备注:上一个代码解释 ,我们可以看到 ,答案或许受到了代码中注释的影响 ,我们删掉注释 ,再来一次。对于解释中一些不懂的点 ,我们可以连续追问!
import numpy as np from sklearn.ensemble import IsolationForest import plotly.express as px import matplotlib.pyplot as plt from sklearn.cluster import KMeans import json def Fusion_algorithm(y_list): for i in range(1, len(y_list)): difference = y_list[i] - y_list[i - 1] if difference <= 0: y_list[i] = y_list[i - 1] # else: # if abs(difference) > 2 * np.mean(y_list[:i]): # y_list[i] = y_list[i - 1] ma = np.mean(y_list) std = np.std(y_list) z_score = [(x - ma) / std for x in y_list] for i in range(len(y_list)): if z_score[i] > 3: print(y_list[i]) y_list[i] = y_list[i - 1] return y_list六 、修复代码错误
用途:写完一段代码后发现有错误?让chatGPT来帮你!
### Buggy Python import Random a = random.randint(1,12) b = random.randint(1,12) for i in range(10): question = "What is "+a+" x "+b+"? " answer = input(question) if answer = a*b print (Well done!) else: print("No.")六 、作为百科全书
用途:chatGPT可以解释你所有的问题!但是列出小说这个功能有些拉跨,经过测试只有科幻小说列的还可以 ,其他类型不太行 ,可能chatgpt训练工程师是个科幻迷!
七 、信息提取
用途:作为自然语言处理界的大模型,怎么能少得了信息提取呢?
七 、好友聊天
用途:输入对方性格模拟聊天 ,这方面功能不太完善 ,可能有新鲜玩法我还没有挖掘出来 。
八 、创意生成器
用途:是不是常常会在创新上遇到思维瓶颈不知道怎么做?不要担心 ,让chatGPT帮你生成创意!
8-1 、VR和密室结合
8-2 、再结合AR
九 、采访问题
用途: 可能您是一个媒体工作者 ,采访问题不知道怎么写?chatGPT可以帮您解决 。
9-1 、采访问题清单
9-2 、采访问题清单并给出相应答案
十 、论文大纲
用途: 这个功能对于研究生简直不要太爽了 ,一直在郁闷大纲怎么写 ,直接列出来大纲简直帮了我天大的忙!对于大纲中不理解的点 ,直接要求chatGPT给出进一步解释。代码也可以有!那一章的内容不太会写 ,直接让chatGPT安排 ,这样 ,一篇论文很快就写出来啦!
10-1、创建论文大纲
10-2 、解释大纲内容
class PBA(nn.Module): def __init__(self, PerformanceThreshold, DistributionType, AttentionWeightRange): super(PBA, self).__init__() self.PerformanceThreshold = PerformanceThreshold self.DistributionType = DistributionType self.AttentionWeightRange = AttentionWeightRange def forward(self, input, performance_scores): # 计算注意力分数 attention_scores = [] for i in range(len(input)): if performance_scores[i] > self.PerformanceThreshold: attention_scores.append(performance_scores[i]) else: attention_scores.append(0.0) # 将性能分数映射到注意力权重 if self.DistributionType == "softmax": attention_weights = F.softmax(torch.tensor(attention_scores), dim=0) elif self.DistributionType == "sigmoid": attention_weights = torch.sigmoid(torch.tensor(attention_scores)) else: raise ValueError("Unknown distribution type: {}".format(self.DistributionType)) # 缩放注意力权重到指定范围 attention_weights = attention_weights * (self.AttentionWeightRange[1] - self.AttentionWeightRange[0]) + self.AttentionWeightRange[0] # 计算加权输入 weighted_input = torch.mul(input, attention_weights.unsqueeze(1).expand_as(input)) output = torch.sum(weighted_input, dim=0) return output十一 、故事创作
用途: 这个功能真的太太太棒了 ,以后我自己列提纲出来就可以写小说啦!
11-1、爱情故事
11-2 、恐怖故事
十二 、问题类比
二十 、闲聊机器人
用途:这个不多说了 ,用来闲聊体验感真的很不错 。
总结
emmm,今天白嫖chatGPT次数太多了 ,request请求被禁止了 ,那就改天再请求啦~
创心域SEO版权声明:以上内容作者已申请原创保护,未经允许不得转载,侵权必究!授权事宜、对本内容有异议或投诉,敬请联系网站管理员,我们将尽快回复您,谢谢合作!