首页IT科技图像分割mask的作用(【图像分割】Meta分割一切(SAM)模型环境配置和使用教程)

图像分割mask的作用(【图像分割】Meta分割一切(SAM)模型环境配置和使用教程)

时间2025-05-01 00:41:56分类IT科技浏览3457
导读:注意:python>=3.8, pytorch>=1.7,torchvision>=0.8...

注意:python>=3.8, pytorch>=1.7,torchvision>=0.8

Feel free to ask any question. 遇到问题欢迎评论区讨论.

官方教程:

https://github.com/facebookresearch/segment-anything

1 环境配置

1.1 安装主要库:

(1)pip:

有可能出现错误         ,需要配置好Git          。

pip install git+https://github.com/facebookresearch/segment-anything.git

(2)本地安装:

有可能出现错误              ,需要配置好Git             。

git clone git@github.com:facebookresearch/segment-anything.git cd segment-anything; pip install -e .

(3)手动下载+手动本地安装:

 zip文件:

链接:https://pan.baidu.com/s/1dQ--kTTJab5eloKm6nMYrg 提取码:1234

解压后运行: 

cd segment-anything-main pip install -e .

1.2 安装依赖库:

pip install opencv-python pycocotools matplotlib onnxruntime onnx

matplotlib 3.7.1和3.7.0可能报错

如果报错:pip install matplotlib==3.6.2

1.3 下载权重文件:

下载三个权重文件中的一个    ,我用的第一个    。

default or vit_h: ViT-H SAM model. vit_l: ViT-L SAM model. vit_b: ViT-B SAM model.

 如果下载过慢:

链接:https://pan.baidu.com/s/11wZUcjYWNL6kxOH5MFGB-g  提取码:1234 

2 使用教程

2.1 根据在图片上选择的点扣出物体

原始图像:

 导入依赖库和展示相关的函数:

import cv2 import matplotlib.pyplot as plt import numpy as np from segment_anything import sam_model_registry, SamPredictor def show_mask(mask, ax, random_color=False): if random_color: color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) else: color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6]) h, w = mask.shape[-2:] mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) ax.imshow(mask_image) def show_points(coords, labels, ax, marker_size=375): pos_points = coords[labels == 1] neg_points = coords[labels == 0] ax.scatter(pos_points[:, 0], pos_points[:, 1], color=green, marker=*, s=marker_size, edgecolor=white, linewidth=1.25) ax.scatter(neg_points[:, 0], neg_points[:, 1], color=red, marker=*, s=marker_size, edgecolor=white, linewidth=1.25)

确定使用的权重文件位置和是否使用cuda等:

sam_checkpoint = "F:\sam_vit_h_4b8939.pth" device = "cuda" model_type = "default"

模型实例化:

sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) sam.to(device=device) predictor = SamPredictor(sam)

读取图像并选择抠图点:

image = cv2.imread(r"F:\Dataset\Tomato_Appearance\Tomato_Xishi\images\xs_1.jpg") image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) predictor.set_image(image) input_point = np.array([[1600, 1000]]) input_label = np.array([1]) plt.figure(figsize=(10,10)) plt.imshow(image) show_points(input_point, input_label, plt.gca()) plt.axis(on) plt.show()

 扣取图像(会同时提供多个扣取结果):

masks, scores, logits = predictor.predict( point_coords=input_point, point_labels=input_label, multimask_output=True, ) # 遍历读取每个扣出的结果 for i, (mask, score) in enumerate(zip(masks, scores)): plt.figure(figsize=(10,10)) plt.imshow(image) show_mask(mask, plt.gca()) show_points(input_point, input_label, plt.gca()) plt.title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18) plt.axis(off) plt.show()

 尝试扣取其他位置:

2.2 扣取图像中的所有物体

官方教程:

https://github.com/facebookresearch/segment-anything/blob/main/notebooks/automatic_mask_generator_example.ipynb

依赖库和函数导入:

from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor import cv2 import matplotlib.pyplot as plt import numpy as np def show_anns(anns): if len(anns) == 0: return sorted_anns = sorted(anns, key=(lambda x: x[area]), reverse=True) ax = plt.gca() ax.set_autoscale_on(False) polygons = [] color = [] for ann in sorted_anns: m = ann[segmentation] img = np.ones((m.shape[0], m.shape[1], 3)) color_mask = np.random.random((1, 3)).tolist()[0] for i in range(3): img[:,:,i] = color_mask[i] ax.imshow(np.dstack((img, m*0.35)))

读取图片:

image = cv2.imread(r"F:\Dataset\Tomato_Appearance\Tomato_Xishi\images\xs_1.jpg") image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

实例化模型:

sam_checkpoint = "F:\sam_vit_h_4b8939.pth" model_type = "default" device = "cuda" sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) sam.to(device=device)

 分割并展示(速度有点慢):

mask_generator = SamAutomaticMaskGenerator(sam) masks = mask_generator.generate(image) plt.figure(figsize=(20,20)) plt.imshow(image) show_anns(masks) plt.axis(off) plt.show()

2.3 根据文字扣取物体

配置另外一个库:

https://github.com/IDEA-Research/Grounded-Segment-Anything

后续更新细节

创心域SEO版权声明:以上内容作者已申请原创保护,未经允许不得转载,侵权必究!授权事宜、对本内容有异议或投诉,敬请联系网站管理员,我们将尽快回复您,谢谢合作!

展开全文READ MORE
文心一词的出处(文心一言(中国版ChatGPT)内测申请体验) 域名后缀有什么区别吗(探索us.com结尾域名的使用价值和商业潜力)