相似数据检测算法公式(相似数据检测算法)
相似数据检测算法
对于相似数据检测 ,最为简单地可以采用类似Unix diff的方法 。Unix diff对文档进行逐行对比来检测相似文件 ,它采用经典的LCS(Longest Common Subsequence ,最长公共子串)算法 ,运用动态规划方法来计算相似性 。LCS的含义是同时包含在字符串里的一个最长字符序列,LCS的长度作为这两个字符串相似性的度量 。Diff算法以整行作为"字符"来计算最长公共子串 ,性能上比字符级的LCS算法快很多 。这种方法效率很低 ,而且只适用文本文件的相似比较,不能直接适用于二进制文件 。为此 ,研究者们提出为每个文档提取一组特征 ,这样将文件相似性问题转换为集合相似性问题,如基于shingle的计算方法 。这种方式的核心思想是为每个文件提取组特征值 ,以特征值集合来计算相似性 ,从而降低空间和计算复杂性来提高性能 。
经过对shingle算法和simhash算法以及笔者基于bloom filter实现算法的分析 ,相似数据检测算法大致流程如下:
(1) 将数据段分解成一组shingle(即子序列或数据块) ,可以采用定长 、变长 、单词或段落(文本文件)等分块算法;
(2) 为了降低空间和时间计算复杂性 ,可以对shingle集合进行抽样 ,比如Min-Wise ,Modm ,Mins方法;
(3) 基于选定的shingle集合为数据文件抽取特征 ,通常是为每个shingle计算hash值组成的序列作为特征值;
(4) 为了降低空间和时间计算复杂性,可以对文件特征进行降维处理 ,比如simhash和bloom filter;
(5) 基于文件特征计算两个数据对象之间的相似性 ,计算方法有Cosine 、Overlap 、Dice、Jaccard或Hamming距离 。Shingle算法
Shingle算法的核心思想是将文件相似性问题转换为集合的相似性问题,集合的相似性度量方法主要有resemblance 和containment两种 ,其定义如下。|shingle(f1, w) ∩ shingle(f2, w)|
Rw(f1, f2) = ----------------------------------------------
|shingle(f1, w) ∪ shingle(f2, w)||shingle(f1, w) ∩ shingle(f2, w)|
Cw(f1, f2) = ----------------------------------------------
|shingle(f1, w)|数量较大时 ,如果对所有shingle进行相似性处理则系统开销较大,包括内存和CPU资源 。这时就可以考虑对shingle集合进行抽样 ,以降低空间和时间计算复杂性 ,但同时由于样本覆盖率有限 ,相似性精确度会有所降低 。shingle取样主要有三种方法 ,即Min-Wise ,Modm ,和Mins。Min-Wise技术是通过将shingle的长度w和整数值进行映射产生随机哈希的公共集 ,在此相同的模式下进行随机最小独立置换的采样 ,从而得到采样集合;Modm 技术是通过在与Min-Wise同样的公共映射集中选择所有模m为0 的哈希值对应的shingle组成取样集合;Mins技术同样也是先将shingle和整数集进行映射 ,然后从中选择最小s个元素组成取样集合 。此外,还可以使用shingle的hash值代表shingle进行相似性计算 ,能够节省一定计算开销 。
Simhash算法
Shingle算法的空间和时间计算复杂性都比较高 ,对于大数据集的Simlarity Join问题将难以适用。Charikar的simhash算法的核心思想是用一个b位的hash值来表示文件的特征值,然后使用simhash之间的Hamming距离来衡量相似性 。Hamming距离的定义为 ,两个二进制序列中对应位不同的个数 。simhash的计算方法如下:
(1) 将一个b维的向量V初始化为0 ,b位的二进制数s初始化为0;
(2) 对每一个shingle,用hash函数(如MD5, SHA1)计算一个b位的签名h 。对i=1到b ,如果h的第i位为1 ,则V的第i个元素加上该特征权重;否则 ,V的第i个元素减去该特征权重;
(3) 如果V的第i个元素大于0 ,则s的第i位为1 ,否则为0;
(4) 输出s作为simhash 。
与传统hash函数相比 ,simhash具有一个这样的显著特征 ,即越相似的文件具有越相似的simhash值 ,也就是说Hamming距离越小 。显而易见 ,Simhash仅使用b位的hash值来表示文件 的特征,节省了大量的存储开销;Hamming距离计算简单高效 ,Simhash使用Hamming距离来衡量相似性 ,计算复杂性得到大大降低 。简而言之,simhash算法通过对文件特征的降维 ,有效解决了Shingle算法的高空间和时间计算复杂性问题 。然而 ,simhash算法的精确度也会有所损耗,并且与simhash的位数b有关 ,b越大精确度越高 。Bloom filter算法
与Simhash算法本质相似 ,Bloom filter算法的核心思想也是着眼于文件特征的降维 ,它使用Bloom filter数据结构来表示特征值 。Bloom filter是一个空间效率很高的数据结构 ,它由一个位数组和一组hash映射函数组成。Bloom filter可以用于检索一个元素是否在一个集合中 ,它的优点是空间效率和查询时间都远远超过一般的算法 ,缺点是有一定的误识别率和删除困难 。使用Bloom filter进行相似数据检测 ,可以弥补shingle中应用特征集交集计算文件相似性所导致的高计算和存储空间开销 ,在性能与相似性匹配精度之间取得平衡 。Bloom filter构造方法如下:
(1) 构造一个m位的bloom filter数据结构bf ,并将所有位初始为0;
(2) 选定两个hash函数作为映射函数,分别为hash1 ,hash2;
(3) 对每一个shingle ,分别应用hash1和hash2,并对bf相应比特位置1;
(4) 输出bf作为文件特征值。
这样 ,两个文件相似性计算就转换成两个bloom filter的相似性计算 ,越相似的文件在它们的bloom filter中有更多共同的1 。由于Bloom filter具有有限的误识别率的特性,相似性算法精确度取决于Bloom filter的大小 ,越大则精确度越高 ,同时存储空间消耗也越大 。Bloom filter同样可以使用Hamming距离衡量相似性 ,也可以使用Cosine 、Overlap 、Dice、Jaccard等方法来度量。Hamming距离前面已有定义 ,这里介绍一下后四种方法的计算公式 。dot(x, y)
Cosine_sim(x, y) = -----------------
sqrt(|x|.|y|)dot(x, y)
Overlap_sim(x, y) = -----------------
min(|x|, |y|)2.dot(x, y)
Dice_sim(x, y) = -----------------
|x| + |y|dot(x, y)
Jaccard_sim(x, y) = ------------------------
|x| + |y| - dot(x, y)其中 ,dot(x, y) = Σx[i].y[i] ,在这里相当于两个Bloom filter数据结构中同时为1的位数;|x|表示bloom filter数据结构中为1的位数 。相似性计算函数如下:
view plaincopy to clipboardprint?
01.static double bloom_sim(BLOOM *bloom1, BLOOM *bloom2)
02.{
03. int i, r1, r2;
04. int c1 = 0, c2 = 0, comm = 0;
05. double sim;
06.
07. for (i = 0; i < BLOOM_ARRAY_SZ; i++) {
08. r1 = bloom_check(bloom1, 1, i);
09. r2 = bloom_check(bloom2, 1, i);
10. if (r1 && r2) {
11. comm++;
12. c1++;
13. c2++;
14. } else {
15. if (r1) {
16. c1++;
17. }
18.
19. if (r2) {
20. c2++;
21. }
22. }
23. }
24.
25.
26. /* similarity measures */
27. //sim = comm/(sqrt(c1) * sqrt(c2)); /* Cosine */
28. //sim = comm/1.0/(c1 + c2 - comm); /* Jaccard */
29. //sim = comm*2.0/(c1 + c2); /* Dice */
30. sim = comm*1.0/(c1
31. return sim;
32.}三种算法对比
Shingle算法的空间和计算复杂性高 ,相似性精度也高 ,适合数据量不大且对精度要求高的应用 。Simhash和bloom filter算法在空间消耗和计算复杂性方面都优于Shingle算法 ,但是精度有所损耗,取决于simhash的长度和bloom filter的大小 。simhash的长度通常为64位或128位 ,这个基本可以满足应用的需求 ,可以根据实际需求增大位数 。bloom filter要大于simhash长度,可以根据最大shingle数的两倍来估算 ,精度方面也要优于simhash 。由于hash函数的碰撞问题 ,simhash和bloom filter算法可能出现误判现象,即不相似的文件可能会判定为相似的 。总结一下 ,通常情况下 ,文件特征值存储空间消耗方面 ,Shingle > bloom filter > simhash;相似性计算精度方面 ,Shingle < bloom filter < simhash 。Bloom filter算法往往是比较折中的相似数据检测方法选择 ,但海量数据集的相似性计算往往采用simhash算法 ,在计算性能方面具有很大优势 ,而且更加适合MapReduce计算模型 。创心域SEO版权声明:以上内容作者已申请原创保护,未经允许不得转载,侵权必究!授权事宜、对本内容有异议或投诉,敬请联系网站管理员,我们将尽快回复您,谢谢合作!