首页IT科技vector容器底层(Vector底层实现)

vector容器底层(Vector底层实现)

时间2025-08-26 23:10:09分类IT科技浏览7702
导读:Vector底层实现 vector的三个私有成员...

Vector底层实现

vector的三个私有成员

:_start 记录初始位置

, _finish记录有效字符

, _endofstoage 记录容量大小

vector会存储的类型不同                   ,所以要用模版来定类型

typedef T* iterator;

iterator _start;

iterator _finish;

iterator _endofstoage;

也就是T*

构造函数的方法很多可以用迭代器的范围来构造

//用迭代器构造的构造函数

传过来的是它的迭代器的类型我们也用它的类型来接收不比加* &

三个属性先初始化

只要根据传过来的范围来push_back()即可

push_back函数后面会实现

构造是也可以根据n分val来构造所以这个功能也需要提供

传过来的是n个用size_t接收因为n必须是>=0的 而val是根据类型所以用模版类型接受

有些情况下val会不传参 那么我们就会提供他的默认构造 (注意在C++中                           ,内置类型也是有默认构造的)

三个属性初始话

先用reserve函数创建n个空间

在分别push_back()添加val

//构造n个val的构造函数 vector(size_t n, const T& val = T()) : _start(nullptr) , _finish(nullptr) , _endofstoage(nullptr) { reserve(n); for (size_t i = 0; i < n; ++i) { push_back(val); } }

因为某些情况第一个参数是int 第二个参数也是int会调用到迭代器的函数因为这两个类型更加适配         ,所以会出问题                   ,所以需要再提供一个第一个参数为int的相同函数                            ,来避免这种情况

//构造n个val的构造函数 //因为用int会调用到其他函数 所以为了区分 单独写出一个第一个为int vector(int n, const T& val = T()) : _start(nullptr) , _finish(nullptr) , _endofstoage(nullptr) { reserve(n); for (int i = 0; i < n; ++i) { push_back(val); } }

swap函数

这个函数是用来给拷贝构造使用

交换类的三个属性成员

//交换 void swap(vector<T>& v) { std::swap(_start, v._start); std::swap(_finish, v._finish); std::swap(_endofstoage, v._endofstoage); }

拷贝构造

拷贝的本质是把一个有数据的拷贝给一个无数据的         ,只需要用这个无数据的迭代器去调用迭代器构造         ,给一个临时tmp                            ,最后再用这个无数据的与临时tmp交换 即可

因为传过来的是另一个vector所以必须用vector<T>接收 C++传参是特别需要注意的                  ,真的很容易乱

//拷贝构造 vector(const vector<T>& v) : _start(nullptr) , _finish(nullptr) , _endofstoage(nullptr) { vector<T> tmp(v.begin(), v.end());//复用用迭代器构造的构造函数 swap(tmp); }

赋值重载

v1=v2 是两个vector的数据赋值所以它的返回值必须是vector<t> 而传参数时也必须是vector<t>

函数本质也是交换         ,所以直接调用swap 这里之所以能直接调用而不影响到v2是因为函数是用传值传参                            ,它是不会影响到v2本体的                  ,(现代写法)

返回时是返回本体 (*this)

vector<T>& operator=(vector<T> v)//赋值重载 不用引用 现代写法 { swap(v);//现代写法 return *this; }

析构函数

判断是否为空当不为空时才需要析构 如果为空去析构会崩溃

把数据释放,并且它三个属性置空

// 资源管理 ~vector() { if (_start) { delete[] _start; _start = _finish = _endofstoage = nullptr; } }

迭代器部分

vector的迭代器本质就是指针 根据传进来的类型 iterator就是这个类型的指针

并且迭代器分为const版本和非const版本

所以需要提供两个版本

//迭代器 typedef T* iterator; typedef const T* const_iterator;

注意end返回的是你的实际有效字符而不是你的的空间多大

iterator begin() { return _start; } iterator end() { return _finish; } const_iterator begin() const { return _start; } const_iterator end() const { return _finish; }

size

你的有效字符 _finish 而_finish实际上是有效字符的下一个位置

所以需要减去初始的位置得到它真正的有效字符

size_t size() const { return _finish - _start; }

capacity

计算的是vector的空间大小也就是你的记录空间大小减去初始位置

size_t capacity() const { return _endofstoage - _start; }

【】重载

vector是支持随意访问的                            ,所以【】的重载必不可少

返回的是vector里存储的类型 实际上就是模版类型 因为传出去也代表它需要改变所以需要传引用

T& operator[](size_t n) { assert(n < size()); //return *(_start + n); return _start[n]; //这个也可以 }

【】重载有些地方是需要提供const版本不允许更改的版本

const T& operator[](size_t n) const { assert(n < size()); //return *(_start + n); return _start[n]; //这个也可以 }

reserve

扩容空间 但不初始化

这里需要注意扩容后的三个属性更新出现的问题 正常运行会崩溃                   。 问题的关键:开辟一个新空间时                           ,他们三个的类型是指针!而不是下标,一个地址更新                   ,去用以前的指针                           ,去更改这个新的地址         ,是会崩溃的                   ,而下标是固定位置                            ,地址在怎么更新         ,下标的位置就是固定的                           。

我们需要记录原先的有效字符个数

正常比较和扩容         ,只是这里用memcpy函数时                            ,出现嵌套情况时                  ,会出现浅拷贝情况

需要用赋值深拷贝

另外两个要更新时         ,要用预先存储好的数据来更新详情看注释!

void reserve(size_t n) { size_t sz = size(); if (n > capacity()) { T* tmp = new T[n]; if (_start) //如果_start为空时 就不需要拷贝数据了 { //memcpy(tmp, _start, size() * sizeof(T));//把_start的数据拷贝到tmp //这样做 在嵌套时                            ,会发生浅拷贝 for (size_t i = 0; i < size(); i++)//正确做法是直接赋值 在vector<vector> 这种嵌套时 是深拷贝 { tmp[i] = _start[i]; } delete[] _start; } _start = tmp;//更新过后 _start就不再是nullptr } //_finish = _start + size();//× 结果为空 解引用无地址 赋值会崩溃 ==_start+(_finish-_start) 这里的_finsih最后是等于空 //而跳出函数后 _finish解引用再赋值会崩溃 因为空地址无法赋值 _finish = _start + sz;//√ 结果为_start有地址         。解引用能赋值 ==_start+0 == 这里先让原先的_finish-_start==0 再+上0 因为_start已经更新过了 所以需要在开头记录_size的大小 //而更新过的_start不是空 这时候在调用size _finish-_start就不是0了 而是其他值了 _endofstoage = _start + n; }

resize

扩容                  ,但会初始化数据

要扩容的大小大于实际空间大小(不是实际字符大小!)时,我们先开需要大小空间即可

如果n大于实际字符大小时

我们需要在实际字符的位置后开始不断添加val(要初始化的值)

如果n小于实际字符大小

那么就把实际字符大小改为 n个 即初始值+n

void resize(size_t n, T val = T()) { if (n > capacity()) { reserve(n); } if (n > size()) { while (_finish < _start + n) { *_finish = val; ++_finish; } } else { _finish = _start + n; } }

push_back()

添加字符

只要需要添加字符的函数                            ,基本是需要检查空间是否足够的

一种情况为实际空间为0还未扩容时默认给它开4个空间                           ,如果有空间,但满时                   ,扩二倍即可(为什么扩容二倍?没什么!因为合适或者1.5倍                           ,扩容其他倍数要么太小         ,要么太大                   ,1.5和2的倍数是适应性最好的

扩容好后                            ,或者空间足够时

直接在有效字符的位置添加字符 (为什么不先++?因为前面说过         ,实际字符的指针实际上是指向实际字符的后一位         ,所以你要添加                            ,直接在实际字符指针添加即可)

最后添加好后                  ,实际字符++ (这也是返回真实字符时         ,不直接返回_finish                            ,而是返回_finish-_start

因为嵌套的作用                  ,此函数在insert函数实现后,可以直接复用insert就可以了

void push_back(const T& x) { /*if (_finish == _endofstoage) { size_t newCapacity = capacity() == 0 ? 4 : capacity() * 2; reserve(newCapacity); } *_finish = x; ++_finish;*/ insert(end(), x); }

pop_back()

此函数只需要把实际字符--即可

先判断合法性                            ,实际字符必须大于初始值

因为嵌套的作用                           ,此函数在erase函数实现后,可以直接复用erase就可以了

void pop_back() { /* if (_finish > _start) { --_finish; }*/ erase(end() - 1); }

insert

注意此函数会有迭代器失效问题!

通常此函数是不需要返回的                   ,但因为迭代器失效问题                           ,所以必须有返回值         ,因为返回的就是此指向此函数的指针也就是T*模版类型指针 所以用重命名的iterator即可

pos是指向要插入的位置                   ,这个函数都是用指针来指针                            ,所以没办法使用下标         ,这也是它的失效的问题之一!

首先判断是否需要扩容

上面的reserve提到过         ,扩容后                            ,_start的地址是会变的                  ,而pos也是迭代器         ,它也是指向这个地址的指针                            ,它不会跟着更新地址而变化                   。

所以这个pos它指向的位置                  ,是原来_start的位置,而这个位置已经被释放了                            ,所以再去使用这个pos时                           ,是会崩溃的!

所以为了防止这种情况,我们需要先记录这个pos的位置                   ,等待_start的地址更新好后                           ,我们要根据原先这个存储好pos的位置         ,在去用_start的地址                   ,去更新新的pos位置                            ,并且pos的位置不变                            。

然后开始移动pos后的数据给pos位置开出空间         ,能让val插入

最后在pos的位置插入val

再++实际空间

最后需要放回插入后的位置

那么我们在使用是         ,需要用迭代器去接收                            ,才能防止迭代器的失效                  ,因为原先的迭代器已经失效         ,需要根据这个返回值                            ,来更新迭代器         。

while (it != v1.end()) { if (*it % 2 == 0) { it = v1.insert(it, 100);//因为迭代器更新数据会失效 所以要用it接收 防止失效 ++ it;//返回的是插入的位置 再次++会再次遇到原来的位置 所以插入后 要自增++一次 } ++it; }

erase

此函数存在迭代器失效的问题

正常删除即可

只是返回必须返回删除后的下一个值

使用这个函数时                  ,也是需要迭代器用函数返回值接收,来更新迭代器

while (it != v.end()) { if ((*it) % 2 == 0) { it = v.erase(it); } else { ++it; } }

clear

置空功能                            ,只需要把有效字符置为初始值即可         。

//置空 void clear() { _finish = _start;//把有效字符改为初始 }

接下来是源码

#pragma once #include<iostream> #include<assert.h> using namespace std; namespace moxuan { template<class T> class vector { public: //迭代器 typedef T* iterator; typedef const T* const_iterator; //默认无参构造 vector() :_start(nullptr) , _finish(nullptr) , _endofstoage(nullptr) {} //用迭代器构造的构造函数 template <class InputIterator> vector(InputIterator first, InputIterator last) : _start(nullptr) , _finish(nullptr) , _endofstoage(nullptr) { while (first != last) { push_back(*first); ++first; } } //构造n个val的构造函数 vector(size_t n, const T& val = T()) : _start(nullptr) , _finish(nullptr) , _endofstoage(nullptr) { reserve(n); for (size_t i = 0; i < n; ++i) { push_back(val); } } //构造n个val的构造函数 //因为用int会调用到其他函数 所以为了区分 单独写出一个第一个为int vector(int n, const T& val = T()) : _start(nullptr) , _finish(nullptr) , _endofstoage(nullptr) { reserve(n); for (int i = 0; i < n; ++i) { push_back(val); } } //交换 void swap(vector<T>& v) { std::swap(_start, v._start); std::swap(_finish, v._finish); std::swap(_endofstoage, v._endofstoage); } //拷贝构造 vector(const vector<T>& v) : _start(nullptr) , _finish(nullptr) , _endofstoage(nullptr) { vector<T> tmp(v.begin(), v.end());//复用用迭代器构造的构造函数 swap(tmp); } vector<T>& operator=(vector<T> v)//赋值重载 不用引用 现代写法 { swap(v);//现代写法 return *this; } // 资源管理 ~vector() { if (_start) { delete[] _start; _start = _finish = _endofstoage = nullptr; } } iterator begin() { return _start; } iterator end() { return _finish; } const_iterator begin() const { return _start; } const_iterator end() const { return _finish; } size_t size() const { return _finish - _start; } size_t capacity() const { return _endofstoage - _start; } void reserve(size_t n) { size_t sz = size(); if (n > capacity()) { T* tmp = new T[n]; if (_start) //如果_start为空时 就不需要拷贝数据了 { //memcpy(tmp, _start, size() * sizeof(T));//把_start的数据拷贝到tmp //这样做 在嵌套时                           ,会发生浅拷贝 for (size_t i = 0; i < size(); i++)//正确做法是直接赋值 在vector<vector> 这种嵌套时 是深拷贝 { tmp[i] = _start[i]; } delete[] _start; } _start = tmp;//更新过后 _start就不再是nullptr } //_finish = _start + size();//× 结果为空 解引用无地址 赋值会崩溃 ==_start+(_finish-_start) 这里的_finsih最后是等于空 //而跳出函数后 _finish解引用再赋值会崩溃 因为空地址无法赋值 _finish = _start + sz;//√ 结果为_start有地址                            。解引用能赋值 ==_start+0 == 这里先让原先的_finish-_start==0 再+上0 因为_start已经更新过了 所以需要在开头记录_size的大小 //而更新过的_start不是空 这时候在调用size _finish-_start就不是0了 而是其他值了 _endofstoage = _start + n; } void resize(size_t n, T val = T()) { if (n > capacity()) { reserve(n); } if (n > size()) { while (_finish < _start + n) { *_finish = val; ++_finish; } } else { _finish = _start + n; } } void push_back(const T& x) { /*if (_finish == _endofstoage) { size_t newCapacity = capacity() == 0 ? 4 : capacity() * 2; reserve(newCapacity); } *_finish = x; ++_finish;*/ insert(end(), x); } void pop_back() { /* if (_finish > _start) { --_finish; }*/ erase(end() - 1); } T& operator[](size_t n) { assert(n < size()); //return *(_start + n); return _start[n]; //这个也可以 } const T& operator[](size_t n) const { assert(n < size()); //return *(_start + n); return _start[n]; //这个也可以 } //插入 注意会有迭代器失效问题! iterator insert(iterator pos, const T& val) { assert(pos >= _start && pos <= _finish); if (_finish == _endofstoage) { size_t n = pos - _start;//因为更新start后 pos无法跟着更新 所以要记录pos的位置 size_t newsize = capacity() == 0 ? 4 : capacity() * 2; reserve(newsize); pos = _start + n; } iterator cur = _finish - 1; while (cur >= pos) { *(cur + 1) = *cur; --cur; } *pos = val; ++_finish; return pos; } //删除 iterator erase(iterator pos)//返回删除后的下一个位置 { assert(pos >= _start && pos < _finish); iterator it = pos+1; while (it != _finish) { *(it-1) = *it; ++it; } --_finish; return pos++;//返回删除后的下一个位置 } //置空 void clear() { _finish = _start;//把有效字符改为初始 } private: iterator _start; iterator _finish; iterator _endofstoage; };

接下来是用来测试这个vector的可行性 杨辉三角

大家可以源码拿去编译器上,然后调用这个test4函数即可

class Solution { public: vector<vector<int>> generate(int numRows) { vector<vector<int>> vv; vv.resize(numRows); for (size_t i = 0; i < vv.size(); ++i) { // 杨辉三角                   ,每行个数依次递增 vv[i].resize(i + 1, 0); // 第一个和最后一个初始化成1 vv[i][0] = 1; vv[i][vv[i].size() - 1] = 1; } for (size_t i = 0; i < vv.size(); ++i) { for (size_t j = 0; j < vv[i].size(); ++j) { if (vv[i][j] == 0) { // 中间位置等于上一行j-1 和 j个相加 vv[i][j] = vv[i - 1][j - 1] + vv[i - 1][j]; } } } for (size_t i = 0; i < vv.size(); ++i) { for (size_t j = 0; j < vv[i].size(); ++j) { cout << vv[i][j] << " "; } cout << endl; } cout << endl; return vv; } }; void test4() { vector<vector<int>> ret = Solution().generate(5); for (size_t i = 0; i < ret.size(); ++i) { for (size_t j = 0; j < ret[i].size(); ++j) { cout << ret[i][j] << " "; } cout << endl; } cout << endl; } }

这就是本文章的全部内容                           ,感谢您能观看到这里         ,如有问题请评论或私信                  。感谢观看!

声明:本站所有文章                   ,如无特殊说明或标注                            ,均为本站原创发布         。任何个人或组织         ,在未征得本站同意时         ,禁止复制                   、盗用                           、采集         、发布本站内容到任何网站                   、书籍等各类媒体平台                            。如若本站内容侵犯了原著者的合法权益                            ,可联系我们进行处理                  。

创心域SEO版权声明:以上内容作者已申请原创保护,未经允许不得转载,侵权必究!授权事宜、对本内容有异议或投诉,敬请联系网站管理员,我们将尽快回复您,谢谢合作!

展开全文READ MORE
pyqt5漂亮的表格界面(python中pyqt5重写事件) 十大最贵灯具(最贵的节能灯泡是什么)