首页IT科技sql语句大全100句(这几个SQL语法的坑,你踩过吗)

sql语句大全100句(这几个SQL语法的坑,你踩过吗)

时间2025-07-30 10:43:24分类IT科技浏览4379
导读:本文已经收录到Github仓库,该仓库包含计算机基础、Java基础、多线程、JVM、数据库、Redis、Spring、Mybatis、SpringMVC、SpringBoot、分布式、微服务、设计模式、架构、校招社招分享...

本文已经收录到Github仓库             ,该仓库包含计算机基础             、Java基础                    、多线程       、JVM      、数据库                    、Redis             、Spring      、Mybatis                    、SpringMVC             、SpringBoot、分布式                    、微服务                    、设计模式、架构             、校招社招分享等核心知识点                    ,欢迎star~

Github地址:https://github.com/Tyson0314/Java-learning

大家好       ,我是大彬~

今天给大家分享几个SQL常见的“坏毛病             ”及优化技巧             。

SQL语句的执行顺序:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fy3iB43Z-1679581232719)(http://img.topjavaer.cn/img/sql优化1.png)]

1                    、LIMIT 语句

分页查询是最常用的场景之一      ,但也通常也是最容易出问题的地方                    。比如对于下面简单的语句                    ,一般 DBA 想到的办法是在 type, name, create_time 字段上加组合索引       。这样条件排序都能有效的利用到索引             ,性能迅速提升             。

SELECT * FROM operation WHERE type = SQLStats AND name = SlowLog ORDER BY create_time LIMIT 1000, 10;

好吧      ,可能90%以上的 DBA 解决该问题就到此为止                   。但当 LIMIT 子句变成 “LIMIT 1000000,10                    ” 时                    ,程序员仍然会抱怨:我只取10条记录为什么还是慢?

要知道数据库也并不知道第1000000条记录从什么地方开始             ,即使有索引也需要从头计算一次       。出现这种性能问题,多数情形下是程序员偷懒了       。

在前端数据浏览翻页                    ,或者大数据分批导出等场景下                    ,是可以将上一页的最大值当成参数作为查询条件的                   。SQL 重新设计如下:

SELECT * FROM operation WHERE type = SQLStats AND name = SlowLog AND create_time > 2017-03-16 14:00:00 ORDER BY create_time limit 10;

在新设计下查询时间基本固定,不会随着数据量的增长而发生变化             。

面试网站

2       、隐式转换

SQL语句中查询变量和字段定义类型不匹配是另一个常见的错误       。比如下面的语句:

mysql> explain extended SELECT * > FROM my_balance b > WHERE b.bpn = 14000000123 > AND b.isverified IS NULL ; mysql> show warnings; | Warning | 1739 | Cannot use ref access on index bpn due to type or collation conversion on field bpn

其中字段 bpn 的定义为 varchar(20)             ,MySQL 的策略是将字符串转换为数字之后再比较                    。函数作用于表字段                    ,索引失效             。

上述情况可能是应用程序框架自动填入的参数       ,而不是程序员的原意。现在应用框架很多很繁杂             ,使用方便的同时也小心它可能给自己挖坑                    。

3             、关联更新                    、删除

虽然 MySQL5.6 引入了物化特性                    ,但需要特别注意它目前仅仅针对查询语句的优化                    。对于更新或删除需要手工重写成 JOIN。

比如下面 UPDATE 语句       ,MySQL 实际执行的是循环/嵌套子查询(DEPENDENT SUBQUERY)      ,其执行时间可想而知             。

UPDATE operation o SET status = applying WHERE o.id IN (SELECT id FROM (SELECT o.id, o.status FROM operation o WHERE o.group = 123 AND o.status NOT IN ( done ) ORDER BY o.parent, o.id LIMIT 1) t);

执行计划:

+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+ | 1 | PRIMARY | o | index | | PRIMARY | 8 | | 24 | Using where; Using temporary | | 2 | DEPENDENT SUBQUERY | | | | | | | | Impossible WHERE noticed after reading const tables | | 3 | DERIVED | o | ref | idx_2,idx_5 | idx_5 | 8 | const | 1 | Using where; Using filesort | +----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+

重写为 JOIN 之后                    ,子查询的选择模式从 DEPENDENT SUBQUERY 变成 DERIVED             ,执行速度大大加快      ,从7秒降低到2毫秒                    。

UPDATE operation o JOIN (SELECT o.id, o.status FROM operation o WHERE o.group = 123 AND o.status NOT IN ( done ) ORDER BY o.parent, o.id LIMIT 1) t ON o.id = t.id SET status = applying

执行计划简化为:

+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+ | 1 | PRIMARY | | | | | | | | Impossible WHERE noticed after reading const tables | | 2 | DERIVED | o | ref | idx_2,idx_5 | idx_5 | 8 | const | 1 | Using where; Using filesort | +----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+

4       、混合排序

MySQL 不能利用索引进行混合排序       。但在某些场景                    ,还是有机会使用特殊方法提升性能的             。

SELECT * FROM my_order o INNER JOIN my_appraise a ON a.orderid = o.id ORDER BY a.is_reply ASC, a.appraise_time DESC LIMIT 0, 20

执行计划显示为全表扫描:

+----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra +----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+ | 1 | SIMPLE | a | ALL | idx_orderid | NULL | NULL | NULL | 1967647 | Using filesort | | 1 | SIMPLE | o | eq_ref | PRIMARY | PRIMARY | 122 | a.orderid | 1 | NULL | +----+-------------+-------+--------+---------+---------+---------+-----------------+---------+-+

由于 is_reply 只有0和1两种状态             ,我们按照下面的方法重写后,执行时间从1.58秒降低到2毫秒                   。

SELECT * FROM ((SELECT * FROM my_order o INNER JOIN my_appraise a ON a.orderid = o.id AND is_reply = 0 ORDER BY appraise_time DESC LIMIT 0, 20) UNION ALL (SELECT * FROM my_order o INNER JOIN my_appraise a ON a.orderid = o.id AND is_reply = 1 ORDER BY appraise_time DESC LIMIT 0, 20)) t ORDER BY is_reply ASC, appraisetime DESC LIMIT 20;

5      、EXISTS语句

MySQL 对待 EXISTS 子句时                    ,仍然采用嵌套子查询的执行方式       。如下面的 SQL 语句:

SELECT * FROM my_neighbor n LEFT JOIN my_neighbor_apply sra ON n.id = sra.neighbor_id AND sra.user_id = xxx WHERE n.topic_status < 4 AND EXISTS(SELECT 1 FROM message_info m WHERE n.id = m.neighbor_id AND m.inuser = xxx) AND n.topic_type <> 5

执行计划为:

+----+--------------------+-------+------+-----+------------------------------------------+---------+-------+---------+ -----+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+ | 1 | PRIMARY | n | ALL | | NULL | NULL | NULL | 1086041 | Using where | | 1 | PRIMARY | sra | ref | | idx_user_id | 123 | const | 1 | Using where | | 2 | DEPENDENT SUBQUERY | m | ref | | idx_message_info | 122 | const | 1 | Using index condition; Using where | +----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+

去掉 exists 更改为 join                    ,能够避免嵌套子查询,将执行时间从1.93秒降低为1毫秒       。

SELECT * FROM my_neighbor n INNER JOIN message_info m ON n.id = m.neighbor_id AND m.inuser = xxx LEFT JOIN my_neighbor_apply sra ON n.id = sra.neighbor_id AND sra.user_id = xxx WHERE n.topic_status < 4 AND n.topic_type <> 5

新的执行计划:

+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+ | 1 | SIMPLE | m | ref | | idx_message_info | 122 | const | 1 | Using index condition | | 1 | SIMPLE | n | eq_ref | | PRIMARY | 122 | ighbor_id | 1 | Using where | | 1 | SIMPLE | sra | ref | | idx_user_id | 123 | const | 1 | Using where | +----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+

6                    、条件下推

外部查询条件不能够下推到复杂的视图或子查询的情况有:

1             、聚合子查询;

2      、含有 LIMIT 的子查询;

3                    、UNION 或 UNION ALL 子查询;

4             、输出字段中的子查询;

如下面的语句             ,从执行计划可以看出其条件作用于聚合子查询之后:

SELECT * FROM (SELECT target, Count(*) FROM operation GROUP BY target) t WHERE target = rm-xxxx +----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+ | 1 | PRIMARY | <derived2> | ref | <auto_key0> | <auto_key0> | 514 | const | 2 | Using where | | 2 | DERIVED | operation | index | idx_4 | idx_4 | 519 | NULL | 20 | Using index | +----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+

确定从语义上查询条件可以直接下推后                    ,重写如下:

SELECT target, Count(*) FROM operation WHERE target = rm-xxxx GROUP BY target

执行计划变为:

+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+ | 1 | SIMPLE | operation | ref | idx_4 | idx_4 | 514 | const | 1 | Using where; Using index | +----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+

关于 MySQL 外部条件不能下推的详细解释说明请参考以前文章:MySQL · 性能优化 · 条件下推到物化表 http://mysql.taobao.org/monthly/2016/07/08

7、提前缩小范围

先上初始 SQL 语句:

SELECT * FROM my_order o LEFT JOIN my_userinfo u ON o.uid = u.uid LEFT JOIN my_productinfo p ON o.pid = p.pid WHERE ( o.display = 0 ) AND ( o.ostaus = 1 ) ORDER BY o.selltime DESC LIMIT 0, 15

该SQL语句原意是:先做一系列的左连接       ,然后排序取前15条记录                   。从执行计划也可以看出             ,最后一步估算排序记录数为90万                    ,时间消耗为12秒             。

+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+ | 1 | SIMPLE | o | ALL | NULL | NULL | NULL | NULL | 909119 | Using where; Using temporary; Using filesort | | 1 | SIMPLE | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL | | 1 | SIMPLE | p | ALL | PRIMARY | NULL | NULL | NULL | 6 | Using where; Using join buffer (Block Nested Loop) | +----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+

由于最后 WHERE 条件以及排序均针对最左主表       ,因此可以先对 my_order 排序提前缩小数据量再做左连接       。SQL 重写后如下      ,执行时间缩小为1毫秒左右                    。

SELECT * FROM ( SELECT * FROM my_order o WHERE ( o.display = 0 ) AND ( o.ostaus = 1 ) ORDER BY o.selltime DESC LIMIT 0, 15 ) o LEFT JOIN my_userinfo u ON o.uid = u.uid LEFT JOIN my_productinfo p ON o.pid = p.pid ORDER BY o.selltime DESC limit 0, 15

再检查执行计划:子查询物化后(select_type=DERIVED)参与 JOIN             。虽然估算行扫描仍然为90万                    ,但是利用了索引以及 LIMIT 子句后             ,实际执行时间变得很小。

+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+ | 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 15 | Using temporary; Using filesort | | 1 | PRIMARY | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL | | 1 | PRIMARY | p | ALL | PRIMARY | NULL | NULL | NULL | 6 | Using where; Using join buffer (Block Nested Loop) | | 2 | DERIVED | o | index | NULL | idx_1 | 5 | NULL | 909112 | Using where | +----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+

8                    、中间结果集下推

再来看下面这个已经初步优化过的例子(左连接中的主表优先作用查询条件):

SELECT a.*, c.allocated FROM ( SELECT resourceid FROM my_distribute d WHERE isdelete = 0 AND cusmanagercode = 1234567 ORDER BY salecode limit 20) a LEFT JOIN ( SELECT resourcesid      , sum(ifnull(allocation, 0) * 12345) allocated FROM my_resources GROUP BY resourcesid) c ON a.resourceid = c.resourcesid

那么该语句还存在其它问题吗?不难看出子查询 c 是全表聚合查询                    ,在表数量特别大的情况下会导致整个语句的性能下降                    。

其实对于子查询 c             ,左连接最后结果集只关心能和主表 resourceid 能匹配的数据                    。因此我们可以重写语句如下,执行时间从原来的2秒下降到2毫秒。

SELECT a.*, c.allocated FROM ( SELECT resourceid FROM my_distribute d WHERE isdelete = 0 AND cusmanagercode = 1234567 ORDER BY salecode limit 20) a LEFT JOIN ( SELECT resourcesid                    , sum(ifnull(allocation, 0) * 12345) allocated FROM my_resources r, ( SELECT resourceid FROM my_distribute d WHERE isdelete = 0 AND cusmanagercode = 1234567 ORDER BY salecode limit 20) a WHERE r.resourcesid = a.resourcesid GROUP BY resourcesid) c ON a.resourceid = c.resourcesid

但是子查询 a 在我们的SQL语句中出现了多次             。这种写法不仅存在额外的开销                    ,还使得整个语句显的繁杂                    。使用 WITH 语句再次重写:

WITH a AS ( SELECT resourceid FROM my_distribute d WHERE isdelete = 0 AND cusmanagercode = 1234567 ORDER BY salecode limit 20) SELECT a.*, c.allocated FROM a LEFT JOIN ( SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated FROM my_resources r, a WHERE r.resourcesid = a.resourcesid GROUP BY resourcesid) c ON a.resourceid = c.resourcesid

总结

数据库编译器产生执行计划             ,决定着SQL的实际执行方式       。但是编译器只是尽力服务                    ,所有数据库的编译器都不是尽善尽美的             。

上述提到的多数场景       ,在其它数据库中也存在性能问题                   。了解数据库编译器的特性             ,才能避规其短处                    ,写出高性能的SQL语句       。

程序员在设计数据模型以及编写SQL语句时       ,要把算法的思想或意识带进来       。

编写复杂SQL语句要养成使用 WITH 语句的习惯                   。简洁且思路清晰的SQL语句也能减小数据库的负担              。

面试网站

最后给大家分享一个Github仓库      ,上面有大彬整理的300多本经典的计算机书籍PDF                    ,包括C语言                    、C++、Java             、Python                    、前端       、数据库             、操作系统                    、计算机网络       、数据结构和算法      、机器学习                    、编程人生等             ,可以star一下      ,下次找书直接在上面搜索                    ,仓库持续更新中~

Github地址:https://github.com/Tyson0314/java-books

创心域SEO版权声明:以上内容作者已申请原创保护,未经允许不得转载,侵权必究!授权事宜、对本内容有异议或投诉,敬请联系网站管理员,我们将尽快回复您,谢谢合作!

展开全文READ MORE
用关键词搜索图片的软件(掌握关键词搜索量的绝佳方法) 一天50万一个月多少钱一天坑50万的带货野路子!(仅揭秘)