首页IT科技模型参数包括哪些内容(深度学习中模型计算量(FLOPs)和参数量(Params)的理解以及四种计算方法总结)

模型参数包括哪些内容(深度学习中模型计算量(FLOPs)和参数量(Params)的理解以及四种计算方法总结)

时间2025-09-19 05:42:24分类IT科技浏览10493
导读:接下来要分别概述以下内容:...

接下来要分别概述以下内容:

1 首先什么是参数量                    ,什么是计算量

2 如何计算 参数量                              ,如何统计 计算量

3 换算参数量          ,把他换算成我们常用的单位          ,比如:mb

4 对于各个经典网络                              ,论述他们是计算量大还是参数量                    ,有什么好处

5 计算量          ,参数量分别对显存                              ,芯片提出什么要求                    ,我们又是怎么权衡

  

1 首先什么是计算量,什么是参数量

计算量对应我们之前的时间复杂度                              ,参数量对应于我们之前的空间复杂度                              ,这么说就很明显了

也就是计算量要看网络执行时间的长短,参数量要看占用显存的量

2 如何计算:参数量                    ,计算量

(1)针对于卷积层的

其中上面的公式是计算时间复杂度(计算量)                              ,而下面的公式是计算空间复杂度(参数量)

对于卷积层:

参数量就是

(kernel*kernel) *channel_input*channel_output kernel*kernel 就是 weight * weight 其中kernel*kernel = 1个feature的参数量

计算量就是

(kernel*kernel*map*map) *channel_input*channel_output kernel*kernel 就是weight*weight map*map是下个featuremap的大小          ,也就是上个weight*weight到底做了多少次运算 其中kernel*kernel*map*map= 1个feature的计算量

(2)针对于池化层:

无参数

(3)针对于全连接层:

参数量=计算量=weight_in*weight_out

3 对于换算计算量

一般一个参数是值一个float                    ,也就是4个字节

1kb=1024字节

4 对于各个经典网络:

(1)换算

以alexnet为例:

参数量:6000万

设每个参数都是float,也就是一个参数是4字节                              ,

总的字节数是24000万字节

24000万字节= 24000万/1024/1024=228mb

(2)为什么模型之间差距这么大

这个关乎于模型的设计了          ,其中模型里面最费参数的就是全连接层          ,这个可以看alex和vgg,

alex,vgg有很多fc(全连接层)

resnet就一个fc

inceptionv1(googlenet)也是就一个fc

(3)计算量

densenet其实这个模型不大                              ,也就是参数量不大                    ,因为就1个fc

但是他的计算量确实很大          ,因为每一次都把上一个feature加进来                              ,所以计算量真的很大

5 计算量与参数量对于硬件要求

计算量                    ,参数量对于硬件的要求是不同的

计算量的要求是在于芯片的floaps(指的是gpu的运算能力)

参数量取决于显存大小

6 计算量(FLOPs)和参数量(Params)

6.1 第一种方法:thop

计算量:

FLOPs,FLOP时指浮点运算次数                              ,s是指秒                              ,即每秒浮点运算次数的意思,考量一个网络模型的计算量的标准                    。

参数量:

Params                    ,是指网络模型中需要训练的参数总数                              。

第一步:安装模块

pip install thop

第二步:计算

# -- coding: utf-8 -- import torch import torchvision from thop import profile # Model print(==> Building model..) model = torchvision.models.alexnet(pretrained=False) dummy_input = torch.randn(1, 3, 224, 224) flops, params = profile(model, (dummy_input,)) print(flops: , flops, params: , params) print(flops: %.2f M, params: %.2f M % (flops / 1000000.0, params / 1000000.0))

结果

==> Building model.. [INFO] Register count_convNd() for <class torch.nn.modules.conv.Conv2d>. [INFO] Register zero_ops() for <class torch.nn.modules.activation.ReLU>. [INFO] Register zero_ops() for <class torch.nn.modules.pooling.MaxPool2d>. [WARN] Cannot find rule for <class torch.nn.modules.container.Sequential>. Treat it as zero Macs and zero Params. [INFO] Register count_adap_avgpool() for <class torch.nn.modules.pooling.AdaptiveAvgPool2d>. [INFO] Register zero_ops() for <class torch.nn.modules.dropout.Dropout>. [INFO] Register count_linear() for <class torch.nn.modules.linear.Linear>. [WARN] Cannot find rule for <class torchvision.models.alexnet.AlexNet>. Treat it as zero Macs and zero Params. flops: 714691904.0 params: 61100840.0 flops: 714.69 M, params: 61.10 M

注意:

输入input的第一维度是批量(batch size)                              ,批量的大小不回影响参数量          , 计算量是batch_size=1的倍数 profile(net, (inputs,))的 (inputs,)中必须加上逗号                    ,否者会报错

6.2 第二种方法:ptflops

# -- coding: utf-8 -- import torchvision from ptflops import get_model_complexity_info model = torchvision.models.alexnet(pretrained=False) flops, params = get_model_complexity_info(model, (3, 224, 224), as_strings=True, print_per_layer_stat=True) print(flops: , flops, params: , params)

结果

AlexNet( 61.101 M, 100.000% Params, 0.716 GMac, 100.000% MACs, (features): Sequential( 2.47 M, 4.042% Params, 0.657 GMac, 91.804% MACs, (0): Conv2d(0.023 M, 0.038% Params, 0.07 GMac, 9.848% MACs, 3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2)) (1): ReLU(0.0 M, 0.000% Params, 0.0 GMac, 0.027% MACs, inplace=True) (2): MaxPool2d(0.0 M, 0.000% Params, 0.0 GMac, 0.027% MACs, kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False) (3): Conv2d(0.307 M, 0.503% Params, 0.224 GMac, 31.316% MACs, 64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)) (4): ReLU(0.0 M, 0.000% Params, 0.0 GMac, 0.020% MACs, inplace=True) (5): MaxPool2d(0.0 M, 0.000% Params, 0.0 GMac, 0.020% MACs, kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False) (6): Conv2d(0.664 M, 1.087% Params, 0.112 GMac, 15.681% MACs, 192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (7): ReLU(0.0 M, 0.000% Params, 0.0 GMac, 0.009% MACs, inplace=True) (8): Conv2d(0.885 M, 1.448% Params, 0.15 GMac, 20.902% MACs, 384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (9): ReLU(0.0 M, 0.000% Params, 0.0 GMac, 0.006% MACs, inplace=True) (10): Conv2d(0.59 M, 0.966% Params, 0.1 GMac, 13.936% MACs, 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (11): ReLU(0.0 M, 0.000% Params, 0.0 GMac, 0.006% MACs, inplace=True) (12): MaxPool2d(0.0 M, 0.000% Params, 0.0 GMac, 0.006% MACs, kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False) ) (avgpool): AdaptiveAvgPool2d(0.0 M, 0.000% Params, 0.0 GMac, 0.001% MACs, output_size=(6, 6)) (classifier): Sequential( 58.631 M, 95.958% Params, 0.059 GMac, 8.195% MACs, (0): Dropout(0.0 M, 0.000% Params, 0.0 GMac, 0.000% MACs, p=0.5, inplace=False) (1): Linear(37.753 M, 61.788% Params, 0.038 GMac, 5.276% MACs, in_features=9216, out_features=4096, bias=True) (2): ReLU(0.0 M, 0.000% Params, 0.0 GMac, 0.001% MACs, inplace=True) (3): Dropout(0.0 M, 0.000% Params, 0.0 GMac, 0.000% MACs, p=0.5, inplace=False) (4): Linear(16.781 M, 27.465% Params, 0.017 GMac, 2.345% MACs, in_features=4096, out_features=4096, bias=True) (5): ReLU(0.0 M, 0.000% Params, 0.0 GMac, 0.001% MACs, inplace=True) (6): Linear(4.097 M, 6.705% Params, 0.004 GMac, 0.573% MACs, in_features=4096, out_features=1000, bias=True) ) ) flops: 0.72 GMac params: 61.1 M

6.3 第三种方法:pytorch_model_summary

import torch import torchvision from pytorch_model_summary import summary # Model print(==> Building model..) model = torchvision.models.alexnet(pretrained=False) dummy_input = torch.randn(1, 3, 224, 224) print(summary(model, dummy_input, show_input=False, show_hierarchical=False))

结果

==> Building model.. ----------------------------------------------------------------------------- Layer (type) Output Shape Param # Tr. Param # ============================================================================= Conv2d-1 [1, 64, 55, 55] 23,296 23,296 ReLU-2 [1, 64, 55, 55] 0 0 MaxPool2d-3 [1, 64, 27, 27] 0 0 Conv2d-4 [1, 192, 27, 27] 307,392 307,392 ReLU-5 [1, 192, 27, 27] 0 0 MaxPool2d-6 [1, 192, 13, 13] 0 0 Conv2d-7 [1, 384, 13, 13] 663,936 663,936 ReLU-8 [1, 384, 13, 13] 0 0 Conv2d-9 [1, 256, 13, 13] 884,992 884,992 ReLU-10 [1, 256, 13, 13] 0 0 Conv2d-11 [1, 256, 13, 13] 590,080 590,080 ReLU-12 [1, 256, 13, 13] 0 0 MaxPool2d-13 [1, 256, 6, 6] 0 0 AdaptiveAvgPool2d-14 [1, 256, 6, 6] 0 0 Dropout-15 [1, 9216] 0 0 Linear-16 [1, 4096] 37,752,832 37,752,832 ReLU-17 [1, 4096] 0 0 Dropout-18 [1, 4096] 0 0 Linear-19 [1, 4096] 16,781,312 16,781,312 ReLU-20 [1, 4096] 0 0 Linear-21 [1, 1000] 4,097,000 4,097,000 ============================================================================= Total params: 61,100,840 Trainable params: 61,100,840 Non-trainable params: 0 -----------------------------------------------------------------------------

6.4 第四种方法:参数总量和可训练参数总量

import torch import torchvision from pytorch_model_summary import summary # Model print(==> Building model..) model = torchvision.models.alexnet(pretrained=False) pytorch_total_params = sum(p.numel() for p in model.parameters()) trainable_pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad) print(Total - , pytorch_total_params) print(Trainable - , trainable_pytorch_total_params)

结果

==> Building model.. Total - 61100840 Trainable - 61100840

7 输入数据对模型的参数量和计算量的影响

# -- coding: utf-8 -- import torch import torchvision from thop import profile # Model print(==> Building model..) model = torchvision.models.alexnet(pretrained=False) dummy_input = torch.randn(1, 3, 224, 224) flops, params = profile(model, (dummy_input,)) print(flops: , flops, params: , params) print(flops: %.2f M, params: %.2f M % (flops / 1000000.0, params / 1000000.0)) 输入数据:(1, 3, 224, 224)                              ,一张224*224的RGB图像 flops: 714691904.0 params: 61100840.0 flops: 714.69 M, params: 61.10 M 输入数据:(1, 3, 512, 512)          ,一张512*512的RGB图像 flops: 3710034752.0 params: 61100840.0 flops: 3710.03 M params: 61.10 M 输入数据:(8, 3, 224, 224)          ,八张224*224的RGB图像 flops: 5717535232.0 params: 61100840.0 flops: 5717.54 M params: 61.10 M 输入数据 计算量(flops) 参数量(params) (1, 3, 224, 224) 714.69 M 61.10 M (1, 3, 512, 512) 3710.03 M 61.10 M (8, 3, 224, 224) 5717.54 M 61.10 M

参考资料

https://www.cnblogs.com/lllcccddd/p/10671879.html https://blog.csdn.net/Caesar6666/article/details/109842379
声明:本站所有文章                              ,如无特殊说明或标注                    ,均为本站原创发布          。任何个人或组织          ,在未征得本站同意时                              ,禁止复制                    、盗用                              、采集          、发布本站内容到任何网站                    、书籍等各类媒体平台                    。如若本站内容侵犯了原著者的合法权益                    ,可联系我们进行处理                              。

创心域SEO版权声明:以上内容作者已申请原创保护,未经允许不得转载,侵权必究!授权事宜、对本内容有异议或投诉,敬请联系网站管理员,我们将尽快回复您,谢谢合作!

展开全文READ MORE
轮调制度公司真实意图(轮叫调度(RoundRobin Scheduling))