pytorch用来干嘛的(Pytorch安装,这一篇就够了,绝不踩坑)
在pytorch安装时踩到了不少坑 ,看了好多博客 ,最后整合了一份不会踩坑的安装教程 ,主要是参考各个博主的内容 ,从零开始安装pytorch ,分享给大家!
因为这篇文章是整合各个链接 ,所以我自己可能写的比较简略 ,只是为大家提供一个流程 ,解释的不明白的就点进各位大佬的博客详细看就可以了 。
最重要的是:这些链接我会提示你只看指定的位置 ,不是全部,不是全部 ,不是全部!
首先在安装pytorch之前 ,先要安装CUDA,因为一般我们都是用GPU去跑深度学习程序 。
cuda安装参考链接:https://blog.csdn.net/Mind_programmonkey/article/details/99688839
安装CUDA时 ,先看电脑上有没有独立的NVDIA显卡 ,在设备管理器中查看,如果显卡支持 ,接下来到回到桌面 ,右键-NVDIA控制面板-帮助-系统信息 ,你会看到下图
红色的箭头就是显卡驱动程序版本号 ,接下来点击组件
这个也就是你最高支持的CUDA版本 ,目前我这里是11.6 ,但是我建议大家不需要装最新的 ,因为目前不容易找到11.6的配套内容 ,如torch版本等 ,我有些同学在win11的系统上下载的11.6版本的CUDA,后来发现其他资源不好找 ,索性又重新换 ,来回很麻烦,其实低一点点的版本是一样用的 ,所以我建议还是装前几个版本就够用 ,下面我用11.3举例
CUDA下载链接:CUDA Toolkit Archive | NVIDIA Developer
点开后点11.3这里,如果下载其他版本的 ,也是直接点版本就可以
跳转页面如上图选择就可以了 ,选择后点击下载 ,下载好后点安装 ,安装过程大家可以参考我上边分享的CUDA安装的博客 ,非常详细 ,安装完以后 ,接下来就是配置环境变量了 ,我配置环境变量并没有使用这个up主的方法 ,而是用的下面这一篇,更详细一些
CUDA环境变量配置
win10下CUDA和CUDNN的安装(超详细)!亲测有效!_没有人喜欢一个人的博客-CSDN博客_cuda安装
下面附上我的环境变量配置
因为我安装了两个版本的CUDA ,所以多了一行 ,大家按11.1样式就可以,这里咱们用11.3举例是一样的 ,主要是去文件结构下把这些原封不动的粘贴到变量值就可以
然后PATH变量是这样的
我这里太乱了 ,大家看上文博主规范的就好
注意这个博主箭头这里的目录结构应该和大家不一致,这是他自己创建的文件结构 ,我建议第一次安装的同学默认c盘 ,不太能出错
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.1
我的路径大概是差不多这样的结构 ,只要你是默认安装 ,应该就是这样的 ,注意一个是Program Files ,另一个是ProgramData
到此 ,cuda就安装好了 ,记得用博客中的命令行验证安装是否正确 ,接下来,要安装一个cudnn ,参考这个链接 ,和上文那个是同一篇
win10下pytorch-gpu安装以及CUDA详细安装过程_mind_programmonkey的博客-CSDN博客_pytorch-gpu安装
cudnn下载链接
cuDNN Archive | NVIDIA Developer
点开之后是这样的
我们点击箭头这个
安装windows就可以,安装cudnn需要一个NVDIA账号 ,按照流程注册一个就好 ,需要用到邮箱
下载之后,解压缩 ,将压缩包里面的bin 、clude 、lib文件直接复制到CUDA的安装目录下 ,直接覆盖安装 。
就是这几个放到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1这个目录下 ,你自己的和我的可能版本号不一样 ,按你自己的文件结构来就行 ,覆盖安装
好的 ,CUDA和cudnn这里就告一段落
然后我们需要下载anaconda ,这是一个管理python环境的东西 ,有了这个 ,干啥都很方便,这个还是安装非常简单的 ,我附上一个b站的视频链接吧 ,跟着大佬一步步做就可以了
Anaconda和pycharm安装教程
【python编程环境安装】全网最详细python环境安装 。pycharm和anaconda手把手安装教学 。_哔哩哔哩_bilibili
pycharm是一个python编程软件,应该大家都会用到
装好anaconda后 ,我们来到开始界面 ,找到这个
点开以后就是命令行,现在我们要建一个Python的虚拟环境来安装pytorch ,输入
conda create -n PyTorch python=3.9
这个就是创建环境的语句 ,这个PyTorch只是一个环境名 ,自己起就行 ,建议不要太繁琐 ,我自己的就叫做kpytorch ,然后python版本这里都可以3.8 ,3.9没什么限制 ,创建好环境以后 ,输入activate kpytorch(这个kpytorch就是你的环境名)就到了你的虚拟环境中了,这时输入python就能显示python版本号 ,进入python编程模式 ,如果要退出,输入exit()就可以 。
接下来一般的安装教程都会让大家去找pytorch的官网 ,利用网址和镜像源去安装 ,但是我身边的同学们用这种方式出现了各种各样的错误,所以我建议大家用离线安装:
首先从这个链接下载torch和torchvision
下载链接:https://download.pytorch.org/whl/torch_stable.html
下面这个链接是torch和torchvision的对应关系查询 ,我下边也附了一张常用图 ,你的这两个东西的版本和python版本 ,cuda版本都必须对应好
https://github.com/pytorch/vision#installation
点开下载链接是这样的
往下找 ,按照cuda11.3举例和python3.9举例 ,你需要找到
这几个都要对应好 ,cu113就是cuda11.3 ,绿色箭头是torch版本 ,蓝色39就是python版本3.9 ,然后都有linux和windows两种,选择Windows版本 ,根据你自己的各个版本去下载对应的whl文件
然后按照torch和torchvision那张图去找你对应的python版本 ,比如torch1.10.0对应的torchvision版本就是0.11.1
按照上边对应的方法,选择这个就是正确的 ,下载好两个whl文件后 ,用anaconda Prompt切换到你的虚拟环境,就是上文那个命令行 ,在你的虚拟环境中切换到你两个whl文件的安装目录 ,用cd切换应该都会吧 ,重点来了:anaconda是不能整体路径切换的 ,必须要一层一层切换 ,具体解释看下面这个链接
Anaconda切换盘符不成功:https://blog.csdn.net/c20081052/article/details/88839479
还是用我的举例 ,注意细看我切路径的方式 ,我的whl文件就放在D盘的搜狗高速下载中
然后最后一句 ,在文件名前加pip install去安装这两个文件 ,是两个文件,都安装完后 ,就大功告成了
最后验证一下
import torch torch.cuda.is_available()这样就OK了
第一次写博客 ,不知道是否有遗漏的内容,如果大家中途卡在某一步 ,可以在下方评论
创心域SEO版权声明:以上内容作者已申请原创保护,未经允许不得转载,侵权必究!授权事宜、对本内容有异议或投诉,敬请联系网站管理员,我们将尽快回复您,谢谢合作!