开源编程语言有哪几种(轻松玩转开源大语言模型bloom(一))
前言
chatgpt已经成为了当下热门 ,github首页的trending排行榜上天天都有它的相关项目 ,但背后隐藏的却是openai公司提供的api收费服务 。作为一名开源爱好者 ,我非常不喜欢知识付费或者服务收费的理念 ,所以便有决心写下此系列 ,让一般大众们可以不付费的玩转当下比较新的开源大语言模型bloom及其问答系列模型bloomz 。那么废话不多说 ,本篇将介绍如何在个人电脑上简单的使用bloom模型生成句子。
模型介绍
bloom是一个开源的支持最多59种语言和176B参数的大语言模型 。它是在Megatron-LM GPT2的基础上修改训练出来的 ,主要使用了解码器唯一结构 ,对词嵌入层的归一化 ,使用GeLU激活函数的线性偏差注意力位置编码等技术 。它的训练集包含了45种自然语言和12种编程语言,1.5TB的预处理文本转化为了350B的唯一token 。bigscience在hugging face上发布的bloom模型包含多个参数多个版本 ,本文中出于让大家都能动手实践的考虑 ,选择最小号的bloom-1b1版本,其他模型请自行尝试 。
环境准备
python版本最好是3.8及以上 ,因为项目都会逐渐对老版本python停止支持 ,可能找不到现成的wheel包从而需要自己编译,而windows下需要使用VS ,那是个相当痛苦的过程 。
推荐pip原生虚拟环境安装 ,不推荐conda虚拟环境 。本文的安装方法都是基于pip ,如果你不懂pip虚拟环境请运行以下命令(linux如果有python2 ,请运行pip3):
pip install virtualenv -i https://mirror.baidu.com/pypi/simple #安装虚拟环境包 python -m venv bloom #在当前目录创建名叫bloom的虚拟环境创建完后如何启动:
先一路cd到根目录 ,即脚本文件夹所在目录 ,然后cd进去activate 。 cd Scripts activate比如我这里是名叫gpt-ch的环境:
输完后这样就表示启动成功了 ,所有的命令都会在隔离环境里运行 ,安装的包也都会在gpt-ch/Lib/site-packages里:
安装pip包
如果只用cpu进行推理 ,只需要安装以下包:
pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu pip install transformers -i https://mirror.baidu.com/pypi/simple如果你想用英伟达gpu进行推理
,请自行安装gpu版的torch 。这里提供wheel下载链接:
记得torch和torchvision的版本是需要对应的 ,然后这里默认你已经安装配置好了cuda路径 ,如果没有请看我之前的文章或者去网上查 。
以我这里的cu117版本为例。
运行以下命令: pip install torch-1.13.0+cu117-cp39-cp39-win_amd64.whl #自行更改文件名 pip install torchvision-0.14.0+cu117-cp39-cp39-win_amd64.whl #自行更改文件名 pip install transformers -i https://mirror.baidu.com/pypi/simple pip install accelerate -i https://mirror.baidu.com/pypi/simple模型下载
首先请编写以下代码保存运行:
from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "bigscience/bloom-1b1" #1b1,可改名成你想要的更大的模型 tokenizer = AutoTokenizer.from_pretrained(checkpoint) #下载模型的tokenizer model = AutoModelForCausalLM.from_pretrained(checkpoint) #下载模型网速足够快的情况下等一会就下载好了 ,但通常情况下我们得ctrl+c打断代码运行 ,手动下载模型存放到对应位置,即.cache\huggingface\hub\models–bigscience–bloom-1b1下
。
如果你是windows,那么这个cache文件夹默认会创建在C:\Users\Administrator\下 。
如果你是linux,你使用了root权限 ,会在root文件夹下创建 ,如果是普通用户权限 ,则会在对应名称的普通用户目录下 ,此外该文件夹在linux中默认为隐藏文件夹 ,需打开权限查看。
下载模型地址
把如上图所示链接中的五个文件(不包含这个flax_model.msgpack)下载下来放进自己的本地目录下的snapshots\一串数字(如下图所示)即可 ,其他文件夹都不用管 。生成第一段话
万事准备就绪后 ,就可以开始愉快的游玩了,运行以下代码:
from transformers import AutoModelForCausalLM, AutoTokenizer import time a1 = time.time() checkpoint = "bigscience/bloom-1b1" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint) inputs = tokenizer.encode("奋进在不可逆转的复兴进程上", return_tensors="pt") #prompt outputs = model.generate(inputs,min_length=150,max_new_tokens=200,do_sample=True) print(tokenizer.decode(outputs[0])) #使用tokenizer对生成结果进行解码 a2 = time.time() print(ftime cost is {a2 - a1} s)time模块用来计时 ,我的是十二代i7 ,花了40s生成 。
这里有一些生成时的参数需要讲解一下: min_length是指最小生成长度,等于你输入的提示词+最小生成的token数 ,也就是input_length+min_new_tokens。
max_new_tokens规定了最大生成的token数目 ,这里的token你可以理解为一个词,不好翻译所以一律token ,忽略你输入的prompt 。与之相关的是max_length参数 ,其实max_length就是max_new_tokens+你输入的prompt长度 。
do_sample=True表示进行抽样 ,否则会使用贪心解码策略 。生成以下结果:
效果如何?是觉得不如人意还是效果逼真呢?
下期我们将尝试各种解码策略生成不一样的结果并进行比较 ,看到这里的朋友们可以点个关注 ,我们下期再见 。
创心域SEO版权声明:以上内容作者已申请原创保护,未经允许不得转载,侵权必究!授权事宜、对本内容有异议或投诉,敬请联系网站管理员,我们将尽快回复您,谢谢合作!