workers per gpu(mmdet里workers_per_gpu和sampers_per_gpu的作用)
背景:
最近用mmdet的时候发现一个问题 ,在pipeline里进行一些随机操作(例如随机裁剪)的时候 ,设定一个随机种子random seed ,理论上每次随机操作的结果都不同 ,但是实际上发现会有2张图的操作结果是一样的 。
本来以为是batch_size的问题 ,就去修改了sampers_per_gpu 。结果发现实际上是workers_per_gpu的问题 。因此就来好好研究下这俩个参数的作用和意义 。
实际上科班的应该对进程比较熟悉 ,但是也考虑到有很多像我一样非科班的小白 ,可能对进程workers不是很理解 ,故此记录下 ,也欢迎大佬交流指正
这俩个参数具体出现在configs文件里
sampers_per_gpu
这个参数会传入在mmdet/datasets/builder.py里
if dist: # When model is :obj:`DistributedDataParallel`, # `batch_size` of :obj:`dataloader` is the # number of training samples on each GPU. batch_size = samples_per_gpu num_workers = workers_per_gpu else: # When model is obj:`DataParallel` # the batch size is samples on all the GPUS batch_size = num_gpus * samples_per_gpu num_workers = num_gpus * workers_per_gpu可以看到sampers_per_gpu就是控制batch_size的 ,决定了dataloader一次从dataset里取几个样本(几张图) 。
注意这里单卡和多卡不一样 ,简单说sampers_per_gpu是决定每张卡取多少sampers ,总的batch_size要乘以你用的gpu显卡数目
workers_per_gpu
这个参数决定读取数据时每个gpu分配的线程数 。
数据加载时每个 GPU 使用的子进程(subprocess)数目 。
因此如果workers=2,那就会把一个相同的随机种子seed同时作用于两个samper ,因此就会导致出现两个分支(进程) ,就会产生不同组的图做的随机操作完全一样的情况 。
创心域SEO版权声明:以上内容作者已申请原创保护,未经允许不得转载,侵权必究!授权事宜、对本内容有异议或投诉,敬请联系网站管理员,我们将尽快回复您,谢谢合作!