首页IT科技变分模态分解和经验模态分解区别是什么(浅谈VMD—变分模态分解)

变分模态分解和经验模态分解区别是什么(浅谈VMD—变分模态分解)

时间2025-05-19 07:37:08分类IT科技浏览7234
导读:很多场景下,我们需要将信号进行分解,为我们下一步操作提供方便,常用的分解方法可以有EMD族类,例如EMD、EEMD、FEEMD、CEEMDAN、ICEEMDAN等,当然也有小波分解、经验小波分解等,总之分解方式多种多样,根据样本的特点,选用不同的分解方式。这里简要介绍VMD分解。...

很多场景下,我们需要将信号进行分解,为我们下一步操作提供方便,常用的分解方法可以有EMD族类,例如EMD、EEMD、FEEMD、CEEMDAN、ICEEMDAN等,当然也有小波分解、经验小波分解等,总之分解方式多种多样,根据样本的特点,选用不同的分解方式。这里简要介绍VMD分解。

     Konstantin等人在2014年提出了一个完全非递归的变分模态分解(VMD)它可以实现分解模态的同时提取。该模型寻找一组模态和它们各自的中心频率,以便这些模态共同再现输入信号,同时每个模态在解调到基带后都是平滑的。算法的本质是将经典的维纳滤波器推广到多个自适应波段,使得其具有坚实的理论基础,并且容易理解。采用交替方向乘子法对变分模型进行有效优化,使得模型对采样噪声的鲁棒性更强。

VMD分解的具体过程可以理解为变分问题的最优解,可以相应转化为变分问题的构造和求解。

以上就是VMD(变分模态分解)的理论部分,大家不一定全弄明白,因为本人看了原文,也不能完全弄懂里面的数学关系。大体知道分解的过程包含哪几个步骤即可,知网上面关于这类分解的文章也很多,大家可以参考浏览学习下。

下面直接上代码。

function [u, u_hat, omega] = VMD(signal, alpha, tau, K, DC, init, tol) % Variational Mode Decomposition % Authors: Konstantin Dragomiretskiy and Dominique Zosso % zosso@math.ucla.edu --- http://www.math.ucla.edu/~zosso % Initial release 2013-12-12 (c) 2013 % % Input and Parameters: % --------------------- % signal - the time domain signal (1D) to be decomposed % alpha - the balancing parameter of the data-fidelity constraint % tau - time-step of the dual ascent ( pick 0 for noise-slack ) % K - the number of modes to be recovered % DC - true if the first mode is put and kept at DC (0-freq) % init - 0 = all omegas start at 0 % 1 = all omegas start uniformly distributed % 2 = all omegas initialized randomly % tol - tolerance of convergence criterion; typically around 1e-6 % % Output: % ------- % u - the collection of decomposed modes % u_hat - spectra of the modes % omega - estimated mode center-frequencies % % When using this code, please do cite our paper: % ----------------------------------------------- % K. Dragomiretskiy, D. Zosso, Variational Mode Decomposition, IEEE Trans. % on Signal Processing (in press) % please check here for update reference: % http://dx.doi.org/10.1109/TSP.2013.2288675 %---------- Preparations % Period and sampling frequency of input signal save_T = length(signal); fs = 1/save_T; % extend the signal by mirroring T = save_T; f_mirror(1:T/2) = signal(T/2:-1:1); f_mirror(T/2+1:3*T/2) = signal; f_mirror(3*T/2+1:2*T) = signal(T:-1:T/2+1); f = f_mirror; % Time Domain 0 to T (of mirrored signal) T = length(f); t = (1:T)/T; % Spectral Domain discretization freqs = t-0.5-1/T; % Maximum number of iterations (if not converged yet, then it wont anyway) N = 500; % For future generalizations: individual alpha for each mode Alpha = alpha*ones(1,K); % Construct and center f_hat f_hat = fftshift((fft(f))); f_hat_plus = f_hat; f_hat_plus(1:T/2) = 0; % matrix keeping track of every iterant // could be discarded for mem u_hat_plus = zeros(N, length(freqs), K); % Initialization of omega_k omega_plus = zeros(N, K); switch init case 1 for i = 1:K omega_plus(1,i) = (0.5/K)*(i-1); end case 2 omega_plus(1,:) = sort(exp(log(fs) + (log(0.5)-log(fs))*rand(1,K))); otherwise omega_plus(1,:) = 0; end % if DC mode imposed, set its omega to 0 if DC omega_plus(1,1) = 0; end % start with empty dual variables lambda_hat = zeros(N, length(freqs)); % other inits uDiff = tol+eps; % update step n = 1; % loop counter sum_uk = 0; % accumulator % ----------- Main loop for iterative updates while ( uDiff > tol && n < N ) % not converged and below iterations limit % update first mode accumulator k = 1; sum_uk = u_hat_plus(n,:,K) + sum_uk - u_hat_plus(n,:,1); % update spectrum of first mode through Wiener filter of residuals u_hat_plus(n+1,:,k) = (f_hat_plus - sum_uk - lambda_hat(n,:)/2)./(1+Alpha(1,k)*(freqs - omega_plus(n,k)).^2); % update first omega if not held at 0 if ~DC omega_plus(n+1,k) = (freqs(T/2+1:T)*(abs(u_hat_plus(n+1, T/2+1:T, k)).^2))/sum(abs(u_hat_plus(n+1,T/2+1:T,k)).^2); end % update of any other mode for k=2:K % accumulator sum_uk = u_hat_plus(n+1,:,k-1) + sum_uk - u_hat_plus(n,:,k); % mode spectrum u_hat_plus(n+1,:,k) = (f_hat_plus - sum_uk - lambda_hat(n,:)/2)./(1+Alpha(1,k)*(freqs - omega_plus(n,k)).^2); % center frequencies omega_plus(n+1,k) = (freqs(T/2+1:T)*(abs(u_hat_plus(n+1, T/2+1:T, k)).^2))/sum(abs(u_hat_plus(n+1,T/2+1:T,k)).^2); end % Dual ascent lambda_hat(n+1,:) = lambda_hat(n,:) + tau*(sum(u_hat_plus(n+1,:,:),3) - f_hat_plus); % loop counter n = n+1; % converged yet? uDiff = eps; for i=1:K uDiff = uDiff + 1/T*(u_hat_plus(n,:,i)-u_hat_plus(n-1,:,i))*conj((u_hat_plus(n,:,i)-u_hat_plus(n-1,:,i))); end uDiff = abs(uDiff); end %------ Postprocessing and cleanup % discard empty space if converged early N = min(N,n); omega = omega_plus(1:N,:); % Signal reconstruction u_hat = zeros(T, K); u_hat((T/2+1):T,:) = squeeze(u_hat_plus(N,(T/2+1):T,:)); u_hat((T/2+1):-1:2,:) = squeeze(conj(u_hat_plus(N,(T/2+1):T,:))); u_hat(1,:) = conj(u_hat(end,:)); u = zeros(K,length(t)); for k = 1:K u(k,:)=real(ifft(ifftshift(u_hat(:,k)))); end % remove mirror part u = u(:,T/4+1:3*T/4); % recompute spectrum clear u_hat; for k = 1:K u_hat(:,k)=fftshift(fft(u(k,:))); end end

代码很长,尽量看,能看懂多少看懂多少。这里不再讲解,因为这里都是对数学原理的复现,如果要弄懂原理,建议比照原文和代码相结合,逐行去看。如果只是利用这种分解方式,关心得出的结果,那么就没有必要大费周章了。

function [u, u_hat, omega] = VMD(signal, alpha, tau, K, DC, init, tol)

函数的输入输出,这里要解释一下。

函数的输入部分:signal代表输入信号,alpha表示数据保真度约束的平衡参数  ,tau表示时间步长,K表示分解层数,DC表示如果将第一模式置于DC(0频率),则为true。  init表示信号的初始化,tol表示收敛容错准则。通常除了K,也就是分解模态数之外,其他参数都有相应的经验值。绝大部分文献对VMD的探索也是对分解模态数的确定,顶多再加上tau的讨论。(博主后面的文章中也会进行相应的讨论。)

函数的输出部分:u表示分解模式的集合,u_hat表示模式的光谱范围,omega 表示估计模态的中心频率。

下面是调用VMD分解的主程序。主要步骤就是输入信号值,确定VMD的分解参数,画图。

tic clc clear all load(IMF1_7.mat) x=IMF1_7; t=1:length(IMF1_7); %--------- 对于VMD参数进行设置--------------- alpha = 2000; % moderate bandwidth constraint:适度的带宽约束/惩罚因子 tau = 0.0244; % noise-tolerance (no strict fidelity enforcement):噪声容限(没有严格的保真度执行) K = 7; % modes:分解的模态数 DC = 0; % no DC part imposed:无直流部分 init = 1; % initialize omegas uniformly :omegas的均匀初始化 tol = 1e-6 ; %--------------- Run actual VMD code:数据进行vmd分解--------------------------- [u, u_hat, omega] = VMD(x, alpha, tau, K, DC, init, tol); figure; imfn=u; n=size(imfn,1); %size(X,1),返回矩阵X的行数;size(X,2),返回矩阵X的列数;N=size(X,2),就是把矩阵X的列数赋值给N for n1=1:n subplot(n,1,n1); plot(t,u(n1,:));%输出IMF分量,a(:,n)则表示矩阵a的第n列元素,u(n1,:)表示矩阵u的n1行元素 ylabel([IMF ,int2str(n1)],fontsize,11);%int2str(i)是将数值i四舍五入后转变成字符,y轴命名 end xlabel(样本序列,fontsize,14,fontname,宋体); %时间\itt/s toc;

下图记为分解的结果。

 以上就是对VMD分解的简单描述,下面的博文中将探讨如何对分解层数进行相应固定。

创心域SEO版权声明:以上内容作者已申请原创保护,未经允许不得转载,侵权必究!授权事宜、对本内容有异议或投诉,敬请联系网站管理员,我们将尽快回复您,谢谢合作!

展开全文READ MORE
32位升级62为系统(32位升级64位系统教程)