解微分方程在线(PINN深度学习求解微分方程系列一:求解框架)
下面我将介绍内嵌物理知识神经网络(PINN)求解微分方程 。首先介绍PINN基本方法 ,并基于Pytorch框架实现求解一维Poisson方程 。
内嵌物理知识神经网络(PINN)入门及相关论文
深度学习求解微分方程系列一:PINN求解框架(Poisson 1d)
深度学习求解微分方程系列二:PINN求解burger方程正问题
深度学习求解微分方程系列三:PINN求解burger方程逆问题
深度学习求解微分方程系列四:基于自适应激活函数PINN求解burger方程逆问题1.PINN简介
神经网络作为一种强大的信息处理工具在计算机视觉 、生物医学 、 油气工程领域得到广泛应用, 引发多领域技术变革. 。深度学习网络具有非常强的学习能力, 不仅能发现物理规律, 还能求解偏微分方程. 。近年来 ,基于深度学习的偏微分方程求解已是研究新热点 。内嵌物理知识神经网络(PINN)是一种科学机器在传统数值领域的应用方法 ,能够用于解决与偏微分方程 (PDE) 相关的各种问题 ,包括方程求解 、参数反演 、模型发现 、控制与优化等 。
2.PINN方法
PINN的主要思想如图1 ,先构建一个输出结果为
u
^
\hat{u}
u的神经网络 ,将其作为PDE解的代理模型 ,将PDE信息作为约束 ,编码到神经网络损失函数中进行训练 。
损失函数主要包括4部分:偏微分结构损失(PDE loss) ,边值条件损失(BC loss) 、初值条件损失(IC loss)以及真实数据条件损失(Data loss) 。特别的 ,考虑下面这个的PDE问题 ,其中PDE的解
u
(
x
)
u(x)
u(x)在Ω
⊂
R
d
\Omega \subset \mathbb{R}^{d}
Ω⊂Rd定义 ,其中x
=
(
x
1
,
…
,
x
d
)
\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right)
x=(x1,…,xd):
f
(
x
;
∂
u
∂
x
1
,
…
,
∂
u
∂
x
d
;
∂
2
u
∂
x
1
∂
x
1
,
…
,
∂
2
u
∂
x
1
∂
x
d
)
=
,
x
∈
Ω
f\left(\mathbf{x} ; \frac{\partial u}{\partial x_{1}}, \ldots, \frac{\partial u}{\partial x_{d}} ; \frac{\partial^{2} u}{\partial x_{1} \partial x_{1}}, \ldots, \frac{\partial^{2} u}{\partial x_{1} \partial x_{d}} \right)=0, \quad \mathbf{x} \in \Omega
f(x;∂x1∂u,…,∂xd∂u;∂x1∂x1∂2u,…,∂x1∂xd∂2u)=0,x∈Ω同时,满足下面的边界
B
(
u
,
x
)
=
on
∂
Ω
\mathcal{B}(u, \mathbf{x})=0 \quad \text { on } \quad \partial \Omega
B(u,x)=0 on ∂Ω 为了衡量神经网络u
^
\hat{u}
u和约束之间的差异 ,考虑损失函数定义:
L
(
θ
)
=
w
f
L
P
D
E
(
θ
;
T
f
)
+
w
i
L
I
C
(
θ
;
T
i
)
+
w
b
L
B
C
(
θ
,
;
T
b
)
+
w
d
L
D
a
t
a
(
θ
,
;
T
d
a
t
a
)
\mathcal{L}\left(\boldsymbol{\theta}\right)=w_{f} \mathcal{L}_{PDE}\left(\boldsymbol{\theta}; \mathcal{T}_{f}\right)+w_{i} \mathcal{L}_{IC}\left(\boldsymbol{\theta} ; \mathcal{T}_{i}\right)+w_{b} \mathcal{L}_{BC}\left(\boldsymbol{\theta},; \mathcal{T}_{b}\right)+w_{d} \mathcal{L}_{Data}\left(\boldsymbol{\theta},; \mathcal{T}_{data}\right)
L(θ)=wfLPDE(θ;Tf)+wiLIC(θ;Ti)+wbLBC(θ,;Tb)+wdLData(θ,;Tdata)式中:
L
P
D
E
(
θ
;
T
f
)
=
1
∣
T
f
∣
∑
x
∈
T
f
∥
f
(
x
;
∂
u
^
∂
x
1
,
…
,
∂
u
^
∂
x
d
;
∂
2
u
^
∂
x
1
∂
x
1
,
…
,
∂
2
u
^
∂
x
1
∂
x
d
)
∥
2
2
L
I
C
(
θ
;
T
i
)
=
1
∣
T
i
∣
∑
x
∈
T
i
∥
u
^
(
x
)
−
u
(
x
)
∥
2
2
L
B
C
(
θ
;
T
b
)
=
1
∣
T
b
∣
∑
x
∈
T
b
∥
B
(
u
^
,
x
)
∥
2
2
L
D
a
t
a
(
θ
;
T
d
a
t
a
)
=
1
∣
T
d
a
t
a
∣
∑
x
∈
T
d
a
t
a
∥
u
^
(
x
)
−
u
(
x
)
∥
2
2
\begin{aligned} \mathcal{L}_{PDE}\left(\boldsymbol{\theta} ; \mathcal{T}_{f}\right) &=\frac{1}{\left|\mathcal{T}_{f}\right|} \sum_{\mathbf{x} \in \mathcal{T}_{f}}\left\|f\left(\mathbf{x} ; \frac{\partial \hat{u}}{\partial x_{1}}, \ldots, \frac{\partial \hat{u}}{\partial x_{d}} ; \frac{\partial^{2} \hat{u}}{\partial x_{1} \partial x_{1}}, \ldots, \frac{\partial^{2} \hat{u}}{\partial x_{1} \partial x_{d}} \right)\right\|_{2}^{2} \\ \mathcal{L}_{IC}\left(\boldsymbol{\theta}; \mathcal{T}_{i}\right) &=\frac{1}{\left|\mathcal{T}_{i}\right|} \sum_{\mathbf{x} \in \mathcal{T}_{i}}\|\hat{u}(\mathbf{x})-u(\mathbf{x})\|_{2}^{2} \\ \mathcal{L}_{BC}\left(\boldsymbol{\theta}; \mathcal{T}_{b}\right) &=\frac{1}{\left|\mathcal{T}_{b}\right|} \sum_{\mathbf{x} \in \mathcal{T}_{b}}\|\mathcal{B}(\hat{u}, \mathbf{x})\|_{2}^{2}\\ \mathcal{L}_{Data}\left(\boldsymbol{\theta}; \mathcal{T}_{data}\right) &=\frac{1}{\left|\mathcal{T}_{data}\right|} \sum_{\mathbf{x} \in \mathcal{T}_{data}}\|\hat{u}(\mathbf{x})-u(\mathbf{x})\|_{2}^{2} \end{aligned}
LPDE(θ;Tf)LIC(θ;Ti)LBC(θ;Tb)LData(θ;Tdata)=∣Tf∣1x∈Tf∑∥∥∥∥f(x;∂x1∂u,…,∂xd∂u;∂x1∂x1∂2u,…,∂x1∂xd∂2u)∥∥∥∥22=∣Ti∣1x∈Ti∑∥u(x)−u(x)∥22=∣Tb∣1x∈Tb∑∥B(u,x)∥22=∣Tdata∣1x∈Tdata∑∥u(x)−u(x)∥22w
f
w_{f}
wf ,w
i
w_{i}
wi 、w
b
w_{b}
wb和w
d
w_{d}
wd是权重 。T
f
\mathcal{T}_{f}
Tf,T
i
\mathcal{T}_{i}
Ti 、T
b
\mathcal{T}_{b}
Tb和T
d
a
t
a
\mathcal{T}_{data}
Tdata表示来自PDE ,初值 、边值以及真值的residual points 。这里的T
f
⊂
Ω
\mathcal{T}_{f} \subset \Omega
Tf⊂Ω是一组预定义的点来衡量神经网络输出u
^
\hat{u}
u与PDE的匹配程度 。3.求解问题定义
d
2
u
d
x
2
=
−
0.49
⋅
sin
(
0.7
x
)
−
2.25
⋅
cos
(
1.5
x
)
u
(
−
10
)
=
−
sin
(
7
)
+
cos
(
15
)
+
1
u
(
10
%
创心域SEO版权声明:以上内容作者已申请原创保护,未经允许不得转载,侵权必究!授权事宜、对本内容有异议或投诉,敬请联系网站管理员,我们将尽快回复您,谢谢合作!