yolov1网络结构图详解(yolov5从V1.0到V6.2网络变化梳理)
最近在学yolov5的网络结构 ,发现不同的人描述yolov5的网络结构并不同 ,有的说是C3模块有的说是BottleneckCSP,这给我一个小白带来了很大困扰 。查询了很多文章终于在一篇文章中有博主提到 ,yolov5新版本用C3代替了BottleneckCSP 。所以为了搞清楚yolov5的具体网络结构 ,在这里把所有的版本结构记录下来 ,以便之后的学习理解与查看。
v1.0版本如下
:
backbone主要模块:Focus 、Conv 、BottleneckCSP、SPP
head主要模块:BottleneckCSP 、Conv 、nn.Upsample 、Concat 、nn.Conv2d # YOLOv5 backbone backbone: # [from, number, module, args] [[-1, 1, Focus, [64, 3]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3, BottleneckCSP, [128]], [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [-1, 9, BottleneckCSP, [256]], [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [-1, 9, BottleneckCSP, [512]], [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [-1, 1, SPP, [1024, [5, 9, 13]]], ] # YOLOv5 head head: [[-1, 3, BottleneckCSP, [1024, False]], # 9 [-1, 1, Conv, [512, 1, 1]], [-1, 1, nn.Upsample, [None, 2, nearest]], [[-1, 6], 1, Concat, [1]], # cat backbone P4 [-1, 3, BottleneckCSP, [512, False]], # 13 [-1, 1, Conv, [256, 1, 1]], [-1, 1, nn.Upsample, [None, 2, nearest]], [[-1, 4], 1, Concat, [1]], # cat backbone P3 [-1, 3, BottleneckCSP, [256, False]], [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 18 (P3/8-small) [-2, 1, Conv, [256, 3, 2]], [[-1, 14], 1, Concat, [1]], # cat head P4 [-1, 3, BottleneckCSP, [512, False]], [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 22 (P4/16-medium) [-2, 1, Conv, [512, 3, 2]], [[-1, 10], 1, Concat, [1]], # cat head P5 [-1, 3, BottleneckCSP, [1024, False]], [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 26 (P5/32-large) [[], 1, Detect, [nc, anchors]], # Detect(P5, P4, P3) ]v2.0版本如下
:
backbone主要模块:Focus 、Conv 、BottleneckCSP 、SPP
head主要模块:BottleneckCSP 、Conv 、nn.Upsample、Concat
v2.0与V1.0相比最大的区别就是少了nn.Conv2d模块 ,并且Detect指定为17, 20, 23层输出 # YOLOv5 backbone backbone: # [from, number, module, args] [[-1, 1, Focus, [64, 3]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3, BottleneckCSP, [128]], [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [-1, 9, BottleneckCSP, [256]], [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [-1, 9, BottleneckCSP, [512]], [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [-1, 1, SPP, [1024, [5, 9, 13]]], [-1, 3, BottleneckCSP, [1024, False]], # 9 ] # YOLOv5 head head: [[-1, 1, Conv, [512, 1, 1]], [-1, 1, nn.Upsample, [None, 2, nearest]], [[-1, 6], 1, Concat, [1]], # cat backbone P4 [-1, 3, BottleneckCSP, [512, False]], # 13 [-1, 1, Conv, [256, 1, 1]], [-1, 1, nn.Upsample, [None, 2, nearest]], [[-1, 4], 1, Concat, [1]], # cat backbone P3 [-1, 3, BottleneckCSP, [256, False]], # 17 [-1, 1, Conv, [256, 3, 2]], [[-1, 14], 1, Concat, [1]], # cat head P4 [-1, 3, BottleneckCSP, [512, False]], # 20 [-1, 1, Conv, [512, 3, 2]], [[-1, 10], 1, Concat, [1]], # cat head P5 [-1, 3, BottleneckCSP, [1024, False]], # 23 [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) ]V3.0与V3.1和V2.0相同 ,这里不放代码;
从V4.0版本开始 ,作者开始用C3代替了BottleneckCSP ,而其他的结构不变 。C3结构作用基本相同均为BottleneckCSP架构 ,只是在修正单元的选择上有所不同 ,其包含了3个标准卷积层以及多个Bottleneck模块(数量由配置文件.yaml的n和depth_multiple参数乘积决定)
# YOLOv5 backbone backbone: # [from, number, module, args] [[-1, 1, Focus, [64, 3]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3, C3, [128]], [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [-1, 9, C3, [256]], [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [-1, 9, C3, [512]], [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [-1, 1, SPP, [1024, [5, 9, 13]]], [-1, 3, C3, [1024, False]], # 9 ] # YOLOv5 head head: [[-1, 1, Conv, [512, 1, 1]], [-1, 1, nn.Upsample, [None, 2, nearest]], [[-1, 6], 1, Concat, [1]], # cat backbone P4 [-1, 3, C3, [512, False]], # 13 [-1, 1, Conv, [256, 1, 1]], [-1, 1, nn.Upsample, [None, 2, nearest]], [[-1, 4], 1, Concat, [1]], # cat backbone P3 [-1, 3, C3, [256, False]], # 17 (P3/8-small) [-1, 1, Conv, [256, 3, 2]], [[-1, 14], 1, Concat, [1]], # cat head P4 [-1, 3, C3, [512, False]], # 20 (P4/16-medium) [-1, 1, Conv, [512, 3, 2]], [[-1, 10], 1, Concat, [1]], # cat head P5 [-1, 3, C3, [1024, False]], # 23 (P5/32-large) [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) ]一张图快速了解C3与BottleneckCSP区别(从别人那扒的,嘘):
V5.0版本也没有改变网络结构 ,这里不放代码;v6.0版本
将第0层的Focus替换成Conv ,将SPP替换成SPPF;
ps:SPPF比SPP快了一倍时间yolov5 github上有代码验证,这里只放结果 。
# YOLOv5 v6.0 backbone backbone: # [from, number, module, args] [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3, C3, [128]], [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [-1, 6, C3, [256]], [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [-1, 9, C3, [512]], [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [-1, 3, C3, [1024]], [-1, 1, SPPF, [1024, 5]], # 9 ] # YOLOv5 v6.0 head head: [[-1, 1, Conv, [512, 1, 1]], [-1, 1, nn.Upsample, [None, 2, nearest]], [[-1, 6], 1, Concat, [1]], # cat backbone P4 [-1, 3, C3, [512, False]], # 13 [-1, 1, Conv, [256, 1, 1]], [-1, 1, nn.Upsample, [None, 2, nearest]], [[-1, 4], 1, Concat, [1]], # cat backbone P3 [-1, 3, C3, [256, False]], # 17 (P3/8-small) [-1, 1, Conv, [256, 3, 2]], [[-1, 14], 1, Concat, [1]], # cat head P4 [-1, 3, C3, [512, False]], # 20 (P4/16-medium) [-1, 1, Conv, [512, 3, 2]], [[-1, 10], 1, Concat, [1]], # cat head P5 [-1, 3, C3, [1024, False]], # 23 (P5/32-large) [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) ]V6.1和V6.2版本与V6.0相同 ,这里不放代码;
总结
:
V1.0版本backbone主要模块:Focus 、Conv 、BottleneckCSP、SPP;head主要模块:BottleneckCSP 、Conv 、nn.Upsample、Concat 、nn.Conv2d 。
V2.0版本在V1.0版本基础上删去nn.Conv2d ,并且Detect指定为17, 20, 23层输出 。
V4.0版本用C3代替了BottleneckCSP,而其他的结构不变 。
V6.0版本将第0层的Focus替换成Conv ,将SPP替换成SPPF;最后放一张V6.1版本网络结构图:(来自github官方)
创心域SEO版权声明:以上内容作者已申请原创保护,未经允许不得转载,侵权必究!授权事宜、对本内容有异议或投诉,敬请联系网站管理员,我们将尽快回复您,谢谢合作!